These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 30440818)

  • 1. A Reliable Multi-User EMG Interface Based on A Generic-Musculoskeletal Model against Loading Weight Changes
    Pan L; Harmody A; Huang H
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2104-2107. PubMed ID: 30440818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myoelectric Control Based on a Generic Musculoskeletal Model: Toward a Multi-User Neural-Machine Interface.
    Pan L; Crouch DL; Huang H
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jul; 26(7):1435-1442. PubMed ID: 29985153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Myoelectric Control Based on A Generic Musculoskeletal Model: Towards A Multi-User Neural-Machine Interface.
    Pan L; Crouch DL; Huang HH
    IEEE Trans Neural Syst Rehabil Eng; 2018 May; ():. PubMed ID: 29994312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simple EMG-driven musculoskeletal model enables consistent control performance during path tracing tasks.
    Crouch D; He Huang
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1-4. PubMed ID: 28268266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EMG Biofeedback for online predictive control of grasping force in a myoelectric prosthesis.
    Dosen S; Markovic M; Somer K; Graimann B; Farina D
    J Neuroeng Rehabil; 2015 Jun; 12():55. PubMed ID: 26088323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparing EMG-Based Human-Machine Interfaces for Estimating Continuous, Coordinated Movements.
    Pan L; Crouch DL; Huang H
    IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):2145-2154. PubMed ID: 31478862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lumped-parameter electromyogram-driven musculoskeletal hand model: A potential platform for real-time prosthesis control.
    Crouch DL; Huang H
    J Biomech; 2016 Dec; 49(16):3901-3907. PubMed ID: 27814972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Musculoskeletal model-based control interface mimics physiologic hand dynamics during path tracing task.
    Crouch DL; Huang HH
    J Neural Eng; 2017 Jun; 14(3):036008. PubMed ID: 28220759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Musculoskeletal model predicts multi-joint wrist and hand movement from limited EMG control signals.
    Crouch DL; He Huang
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1132-5. PubMed ID: 26736465
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time simultaneous and proportional myoelectric control using intramuscular EMG.
    Smith LH; Kuiken TA; Hargrove LJ
    J Neural Eng; 2014 Dec; 11(6):066013. PubMed ID: 25394366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time simultaneous myoelectric control by transradial amputees using linear and probability-weighted regression.
    Smith LH; Kuiken TA; Hargrove LJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1119-23. PubMed ID: 26736462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative study of state-of-the-art myoelectric controllers for multigrasp prosthetic hands.
    Segil JL; Controzzi M; Weir RF; Cipriani C
    J Rehabil Res Dev; 2014; 51(9):1439-54. PubMed ID: 25803683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of probabilistic weights to enhance linear regression myoelectric control.
    Smith LH; Kuiken TA; Hargrove LJ
    J Neural Eng; 2015 Dec; 12(6):066030. PubMed ID: 26595317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of a Simultaneous Myoelectric Control Strategy for a Multi-DoF Transradial Prosthesis.
    Piazza C; Rossi M; Catalano MG; Bicchi A; Hargrove LJ
    IEEE Trans Neural Syst Rehabil Eng; 2020 Oct; 28(10):2286-2295. PubMed ID: 32804650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting wrist kinematics from motor unit discharge timings for the control of active prostheses.
    Kapelner T; Vujaklija I; Jiang N; Negro F; Aszmann OC; Principe J; Farina D
    J Neuroeng Rehabil; 2019 Apr; 16(1):47. PubMed ID: 30953528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. User-in-the-loop continuous and proportional control of a virtual prosthesis in a posture matching task.
    Pulliam CL; Lambrecht JM; Kirsch RF
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():3557-9. PubMed ID: 23366695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. User adaptation in long-term, open-loop myoelectric training: implications for EMG pattern recognition in prosthesis control.
    He J; Zhang D; Jiang N; Sheng X; Farina D; Zhu X
    J Neural Eng; 2015 Aug; 12(4):046005. PubMed ID: 26028132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. IMU-Based Wrist Rotation Control of a Transradial Myoelectric Prosthesis.
    Bennett DA; Goldfarb M
    IEEE Trans Neural Syst Rehabil Eng; 2018 Feb; 26(2):419-427. PubMed ID: 28320673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Grasp specific and user friendly interface design for myoelectric hand prostheses.
    Mohammadi A; Lavranos J; Howe R; Choong P; Oetomo D
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1621-1626. PubMed ID: 28814052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards limb position invariant myoelectric pattern recognition using time-dependent spectral features.
    Khushaba RN; Takruri M; Miro JV; Kodagoda S
    Neural Netw; 2014 Jul; 55():42-58. PubMed ID: 24721224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.