These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 30440825)

  • 1. Comparing the Effects of Signal Noise on Pattern Recognition and Linear Regression-Based Myoelectric Controllers.
    Teh Y; Woodward RB; Hargrove LJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2132-2135. PubMed ID: 30440825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stable, simultaneous and proportional 4-DoF prosthetic hand control via synergy-inspired linear interpolation: a case series.
    Lukyanenko P; Dewald HA; Lambrecht J; Kirsch RF; Tyler DJ; Williams MR
    J Neuroeng Rehabil; 2021 Mar; 18(1):50. PubMed ID: 33736656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Confidence-based rejection for improved pattern recognition myoelectric control.
    Scheme EJ; Hudgins BS; Englehart KB
    IEEE Trans Biomed Eng; 2013 Jun; 60(6):1563-70. PubMed ID: 23322756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A real-time comparison between direct control, sequential pattern recognition control and simultaneous pattern recognition control using a Fitts' law style assessment procedure.
    Wurth SM; Hargrove LJ
    J Neuroeng Rehabil; 2014 May; 11():91. PubMed ID: 24886664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Learning regularized representations of categorically labelled surface EMG enables simultaneous and proportional myoelectric control.
    Olsson AE; Malešević N; Björkman A; Antfolk C
    J Neuroeng Rehabil; 2021 Feb; 18(1):35. PubMed ID: 33588868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of the real-time controllability of pattern recognition to conventional myoelectric control for discrete and simultaneous movements.
    Young AJ; Smith LH; Rouse EJ; Hargrove LJ
    J Neuroeng Rehabil; 2014 Jan; 11():5. PubMed ID: 24410948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A parallel classification strategy to simultaneous control elbow, wrist, and hand movements.
    Leone F; Gentile C; Cordella F; Gruppioni E; Guglielmelli E; Zollo L
    J Neuroeng Rehabil; 2022 Jan; 19(1):10. PubMed ID: 35090512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Classification of simultaneous movements using surface EMG pattern recognition.
    Young AJ; Smith LH; Rouse EJ; Hargrove LJ
    IEEE Trans Biomed Eng; 2013 May; 60(5):1250-8. PubMed ID: 23247839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FMG Versus EMG: A Comparison of Usability for Real-Time Pattern Recognition Based Control.
    Belyea A; Englehart K; Scheme E
    IEEE Trans Biomed Eng; 2019 Nov; 66(11):3098-3104. PubMed ID: 30794502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adapting myoelectric control in real-time using a virtual environment.
    Woodward RB; Hargrove LJ
    J Neuroeng Rehabil; 2019 Jan; 16(1):11. PubMed ID: 30651109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Boosting training for myoelectric pattern recognition using Mixed-LDA.
    Liu J; Sheng X; Zhang D; Zhu X
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():14-7. PubMed ID: 25569885
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-time comparison of conventional direct control and pattern recognition myoelectric control in a two-dimensional Fitts' law style test.
    Wurth SM; Hargrove LJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():3630-3. PubMed ID: 24110516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of probabilistic weights to enhance linear regression myoelectric control.
    Smith LH; Kuiken TA; Hargrove LJ
    J Neural Eng; 2015 Dec; 12(6):066030. PubMed ID: 26595317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonlinear mappings between discrete and simultaneous motions to decrease training burden of simultaneous pattern recognition myoelectric control.
    Ingraham KA; Smith LH; Simon AM; Hargrove LJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1675-8. PubMed ID: 26736598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An adaptation strategy of using LDA classifier for EMG pattern recognition.
    Zhang H; Zhao Y; Yao F; Xu L; Shang P; Li G
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4267-70. PubMed ID: 24110675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time simultaneous and proportional myoelectric control using intramuscular EMG.
    Smith LH; Kuiken TA; Hargrove LJ
    J Neural Eng; 2014 Dec; 11(6):066013. PubMed ID: 25394366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of Linear Regression Simultaneous Myoelectric Control Using Intramuscular EMG.
    Smith LH; Kuiken TA; Hargrove LJ
    IEEE Trans Biomed Eng; 2016 Apr; 63(4):737-46. PubMed ID: 26302506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of EMG pattern recognition for upper limb prosthesis control: a case study in comparison with direct myoelectric control.
    Resnik L; Huang HH; Winslow A; Crouch DL; Zhang F; Wolk N
    J Neuroeng Rehabil; 2018 Mar; 15(1):23. PubMed ID: 29544501
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Applying LDA-based pattern recognition to predict isometric shoulder and elbow torque generation in individuals with chronic stroke with moderate to severe motor impairment.
    Kopke JV; Hargrove LJ; Ellis MD
    J Neuroeng Rehabil; 2019 Mar; 16(1):35. PubMed ID: 30836971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduced Daily Recalibration of Myoelectric Prosthesis Classifiers Based on Domain Adaptation.
    Liu J; Sheng X; Zhang D; He J; Zhu X
    IEEE J Biomed Health Inform; 2016 Jan; 20(1):166-76. PubMed ID: 25532196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.