BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 30440827)

  • 1. A Variable-Impedance Tactile Sensor With Online Performance Tuning for Tissue Hardness Palpation in Robot-Assisted Minimally Invasive Surgery.
    Ju F; Yun Y; Zhang Z; Wang Y; Wang Y; Zhang L; Chen B
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2142-2145. PubMed ID: 30440827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A resonant tactile stiffness sensor for lump localization in robot-assisted minimally invasive surgery.
    Yun Y; Wang Y; Guo H; Wang Y; Wu H; Chen B; Ju F
    Proc Inst Mech Eng H; 2019 Sep; 233(9):909-920. PubMed ID: 31210594
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Palpation-Based Multi-Tumor Detection Method Considering Moving Distance for Robot-assisted Minimally Invasive Surgery.
    Yun Y; Ju F; Zhang Y; Zhu C; Wang Y; Guo H; Wei X; Chen B
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4899-4902. PubMed ID: 33019087
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Polymeric Piezoelectric Tactile Sensor Fabricated by 3D Printing and Laser Micromachining for Hardness Differentiation during Palpation.
    Ge C; Cretu E
    Micromachines (Basel); 2022 Dec; 13(12):. PubMed ID: 36557463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical Micro/Nanofiber-Enabled Compact Tactile Sensor for Hardness Discrimination.
    Tang Y; Liu H; Pan J; Zhang Z; Xu Y; Yao N; Zhang L; Tong L
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):4560-4566. PubMed ID: 33435667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetic resonance imaging-compatible tactile sensing device based on a piezoelectric array.
    Hamed A; Masamune K; Tse ZT; Lamperth M; Dohi T
    Proc Inst Mech Eng H; 2012 Jul; 226(7):565-75. PubMed ID: 22913103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid piezoresistive-optical tactile sensor for simultaneous measurement of tissue stiffness and detection of tissue discontinuity in robot-assisted minimally invasive surgery.
    Bandari NM; Ahmadi R; Hooshiar A; Dargahi J; Packirisamy M
    J Biomed Opt; 2017 Jul; 22(7):77002. PubMed ID: 28734117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integration of force reflection with tactile sensing for minimally invasive robotics-assisted tumor localization.
    Talasaz A; Patel RV
    IEEE Trans Haptics; 2013; 6(2):217-28. PubMed ID: 24808305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monopolar, bipolar, tripolar, and tetrapolar configurations in robot assisted electrical impedance sensing.
    Cheng Z; Savarimuthu TR
    Biomed Phys Eng Express; 2022 Jul; 8(5):. PubMed ID: 35728560
    [No Abstract]   [Full Text] [Related]  

  • 10. Static Tactile Sensing for a Robotic Electronic Skin via an Electromechanical Impedance-Based Approach.
    Liu C; Zhuang Y; Nasrollahi A; Lu L; Haider MF; Chang FK
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32429364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transparent Pneumatic Tactile Sensors for Soft Biomedical Robotics.
    Zhao S; Nguyen CC; Hoang TT; Do TN; Phan HP
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vibro-Acoustic Sensing of Instrument Interactions as a Potential Source of Texture-Related Information in Robotic Palpation.
    Sühn T; Esmaeili N; Mattepu SY; Spiller M; Boese A; Urrutia R; Poblete V; Hansen C; Lohmann CH; Illanes A; Friebe M
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An autoclavable wireless palpation instrument for minimally invasive surgery.
    Naidu AS; Escoto A; Fahmy O; Patel RV; Naish MD
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():6489-6492. PubMed ID: 28269733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A biomimetic elastomeric robot skin using electrical impedance and acoustic tomography for tactile sensing.
    Park K; Yuk H; Yang M; Cho J; Lee H; Kim J
    Sci Robot; 2022 Jun; 7(67):eabm7187. PubMed ID: 35675452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adjustable Compliance Soft Sensor via an Elastically Inflatable Fluidic Dome.
    Zhang X; Kow J; Jones D; de Boer G; Ghanbari A; Serjouei A; Culmer P; Alazmani A
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33799641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Force-Sensorless Identification and Classification of Tissue Biomechanical Parameters for Robot-Assisted Palpation.
    Gutierrez-Giles A; Padilla-Castañeda MA; Alvarez-Icaza L; Gutierrez-Herrera E
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433266
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Innovative optical microsystem for static and dynamic tissue diagnosis in minimally invasive surgical operations.
    Ahmadi R; Packirisamy M; Dargahi J
    J Biomed Opt; 2012 Aug; 17(8):081416. PubMed ID: 23224177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Haptic Intracorporeal Palpation Using a Cable-Driven Parallel Robot: A User Study.
    Saracino A; Oude-Vrielink TJC; Menciassi A; Sinibaldi E; Mylonas GP
    IEEE Trans Biomed Eng; 2020 Dec; 67(12):3452-3463. PubMed ID: 32746002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and analysis of an ultrasonic tactile sensor using electro-mechanical analogy.
    Qian Y; Salehian A; Han SW; Kwon HJ
    Ultrasonics; 2020 Jul; 105():106129. PubMed ID: 32208208
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Piezoelectric Tactile Sensor for Tissue Stiffness Detection with Arbitrary Contact Angle.
    Zhang Y; Ju F; Wei X; Wang D; Wang Y
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33218118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.