BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 30440828)

  • 1. Wrist Kinematics and Kinetics during Wheelchair Propulsion with a Novel Handle-based Propulsion Mechanism.
    Kurup NBR; Puchinger M; Keck T; Gfoehler M
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2146-2149. PubMed ID: 30440828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Vivo Biomechanical Assessment of a Novel Handle-Based Wheelchair Drive.
    Puchinger M; Stefanek P; Gstaltner K; Pandy MG; Gfohler M
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():1669-1678. PubMed ID: 34403347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shoulder pain and jerk during recovery phase of manual wheelchair propulsion.
    Jayaraman C; Beck CL; Sosnoff JJ
    J Biomech; 2015 Nov; 48(14):3937-44. PubMed ID: 26472307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Forward dynamic optimization of handle path and muscle activity for handle based isokinetic wheelchair propulsion: A simulation study.
    Babu Rajendra Kurup N; Puchinger M; Gföhler M
    Comput Methods Biomech Biomed Engin; 2019 Jan; 22(1):55-63. PubMed ID: 30398368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wrist biomechanics during two speeds of wheelchair propulsion: an analysis using a local coordinate system.
    Boninger ML; Cooper RA; Robertson RN; Rudy TE
    Arch Phys Med Rehabil; 1997 Apr; 78(4):364-72. PubMed ID: 9111455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinematics and pushrim kinetics in adolescents propelling high-strength lightweight and ultra-lightweight manual wheelchairs.
    Oliveira N; Blochlinger S; Ehrenberg N; Defosse T; Forrest G; Dyson-Hudson T; Barrance P
    Disabil Rehabil Assist Technol; 2019 Apr; 14(3):209-216. PubMed ID: 29271676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A preliminary muscle activity analysis: Handle based and push-rim wheelchair propulsion.
    Babu Rajendra Kurup N; Puchinger M; Gfoehler M
    J Biomech; 2019 May; 89():119-122. PubMed ID: 31053474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel push-pull central-lever mechanism reduces peak forces and energy-cost compared to hand-rim wheelchair propulsion during a controlled lab-based experiment.
    le Rütte TA; Trigo F; Bessems L; van der Woude LHV; Vegter RJK
    J Neuroeng Rehabil; 2022 Mar; 19(1):30. PubMed ID: 35300710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wheelchair propulsion kinematics in beginners and expert users: influence of wheelchair settings.
    Gorce P; Louis N
    Clin Biomech (Bristol, Avon); 2012 Jan; 27(1):7-15. PubMed ID: 21840091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pushrim forces and joint kinetics during wheelchair propulsion.
    Robertson RN; Boninger ML; Cooper RA; Shimada SD
    Arch Phys Med Rehabil; 1996 Sep; 77(9):856-64. PubMed ID: 8822674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of reverse manual wheelchair propulsion on shoulder kinematics, kinetics and muscular activity in persons with paraplegia.
    Haubert LL; Mulroy SJ; Requejo PS; Maneekobkunwong S; Gronley JK; Rankin JW; Rodriguez D; Hong K
    J Spinal Cord Med; 2020 Sep; 43(5):594-606. PubMed ID: 30768378
    [No Abstract]   [Full Text] [Related]  

  • 12. The effects of rear-wheel camber on the kinematics of upper extremity during wheelchair propulsion.
    Tsai CY; Lin CJ; Huang YC; Lin PC; Su FC
    Biomed Eng Online; 2012 Nov; 11():87. PubMed ID: 23173938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Propulsion biomechanics do not differ between athletic and nonathletic manual wheelchair users in their daily wheelchairs.
    Briley SJ; Vegter RJK; Tolfrey VL; Mason BS
    J Biomech; 2020 May; 104():109725. PubMed ID: 32173030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of wheelchair configurations on shoulder movements, push rim kinetics and upper limb kinematics while negotiating a speed bump.
    Gawande M; Wang P; Arnold G; Nasir S; Abboud R; Wang W
    Ergonomics; 2022 Jul; 65(7):987-998. PubMed ID: 34842063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wrist kinematic characterization of wheelchair propulsion in various seating positions: implication to wrist pain.
    Wei SH; Huang S; Jiang CJ; Chiu JC
    Clin Biomech (Bristol, Avon); 2003 Jul; 18(6):S46-52. PubMed ID: 12828914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of trunk kinematics and EMG activity of wheelchair racing T54 athletes on wheelchair propulsion speeds.
    Guo W; Liu Q; Huang P; Wang D; Shi L; Han D
    PeerJ; 2023; 11():e15792. PubMed ID: 37581118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Upper-limb joint kinetics expression during wheelchair propulsion.
    Morrow MM; Hurd WJ; Kaufman KR; An KN
    J Rehabil Res Dev; 2009; 46(7):939-44. PubMed ID: 20104416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of power-assisted hand-rim wheelchair propulsion on shoulder load in experienced wheelchair users: A pilot study with an instrumented wheelchair.
    Kloosterman MG; Buurke JH; de Vries W; Van der Woude LH; Rietman JS
    Med Eng Phys; 2015 Oct; 37(10):961-8. PubMed ID: 26307457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relation between median and ulnar nerve function and wrist kinematics during wheelchair propulsion.
    Boninger ML; Impink BG; Cooper RA; Koontz AM
    Arch Phys Med Rehabil; 2004 Jul; 85(7):1141-5. PubMed ID: 15241765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanical model for evaluation of pediatric upper extremity joint dynamics during wheelchair mobility.
    Schnorenberg AJ; Slavens BA; Wang M; Vogel LC; Smith PA; Harris GF
    J Biomech; 2014 Jan; 47(1):269-76. PubMed ID: 24309622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.