These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 30440828)

  • 21. Upper extremity wheelchair kinematics in children with spinal cord injury.
    Slavens BA; Graf A; Krzak J; Vogel L; Harris GF
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():8158-61. PubMed ID: 22256235
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Effect of Propulsion Style on Wrist Movement Variability During the Push Phase After a Bout of Fatiguing Propulsion.
    Zukowski LA; Christou EA; Shechtman O; Hass CJ; Tillman MD
    PM R; 2017 Mar; 9(3):265-274. PubMed ID: 27390056
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Early motor learning changes in upper-limb dynamics and shoulder complex loading during handrim wheelchair propulsion.
    Vegter RJ; Hartog J; de Groot S; Lamoth CJ; Bekker MJ; van der Scheer JW; van der Woude LH; Veeger DH
    J Neuroeng Rehabil; 2015 Mar; 12():26. PubMed ID: 25889389
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A new method to quantify demand on the upper extremity during manual wheelchair propulsion.
    Sabick MB; Kotajarvi BR; An KN
    Arch Phys Med Rehabil; 2004 Jul; 85(7):1151-9. PubMed ID: 15241767
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effect of wheelchair propulsion style on changes in time spent in extreme wrist orientations after a bout of fatiguing propulsion.
    Zukowski LA; Hass CJ; Shechtman O; Christou EA; Tillman MD
    Ergonomics; 2017 Oct; 60(10):1425-1434. PubMed ID: 28322620
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Relationship Between Shoulder Pain and Joint Reaction Forces and Muscle Moments During 2 Speeds of Wheelchair Propulsion.
    Chang LS; Ke XW; Limroongreungrat W; Wang YT
    J Appl Biomech; 2022 Dec; 38(6):404-411. PubMed ID: 36370702
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of shoulder kinematic chain models and their influence on kinematics and kinetics in the study of manual wheelchair propulsion.
    Hybois S; Puchaud P; Bourgain M; Lombart A; Bascou J; Lavaste F; Fodé P; Pillet H; Sauret C
    Med Eng Phys; 2019 Jul; 69():153-160. PubMed ID: 31221514
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Upper-limb fatigue-related joint power shifts in experienced wheelchair users and nonwheelchair users.
    Rodgers MM; McQuade KJ; Rasch EK; Keyser RE; Finley MA
    J Rehabil Res Dev; 2003; 40(1):27-37. PubMed ID: 15150718
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Systematic Methodology to Analyze the Impact of Hand-Rim Wheelchair Propulsion on the Upper Limb.
    Larraga-García B; Lozano-Berrio V; Gutiérrez Á; Gil-Agudo Á; Del-Ama AJ
    Sensors (Basel); 2019 Oct; 19(21):. PubMed ID: 31731458
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantification of the Risk of Musculoskeletal Disorders of the Upper Limb Using Fuzzy Logic: A Study of Manual Wheelchair Propulsion.
    Marchiori C; Gagnon DH; Pradon D
    Sensors (Basel); 2023 Oct; 23(21):. PubMed ID: 37960359
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of the shoulder net joint moment during manual wheelchair propulsion using four functional axes.
    Russell IM; Wagner EV; Requejo PS; Mulroy S; Flashner H; McNitt-Gray JL
    J Electromyogr Kinesiol; 2022 Feb; 62():102340. PubMed ID: 31387793
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Trunk and neck kinematics during overground manual wheelchair propulsion in persons with tetraplegia.
    Julien MC; Morgan K; Stephens CL; Standeven J; Engsberg J
    Disabil Rehabil Assist Technol; 2014 May; 9(3):213-8. PubMed ID: 23548111
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of muscle activity during hand rim and lever wheelchair propulsion over flat terrain.
    Błażkiewicz M; Wiszomirska I; Fiok K; Mróz A; Kosmol A; Mikicin M; Molik B; Marszałek J
    Acta Bioeng Biomech; 2019; 21(3):67-74. PubMed ID: 31798014
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Scapular kinematics during manual wheelchair propulsion in able-bodied participants.
    Bekker MJ; Vegter RJK; van der Scheer JW; Hartog J; de Groot S; de Vries W; Arnet U; van der Woude LHV; Veeger DHEJ
    Clin Biomech (Bristol, Avon); 2018 May; 54():54-61. PubMed ID: 29554550
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effect of seat position on manual wheelchair propulsion biomechanics: a quasi-static model-based approach.
    Richter WM
    Med Eng Phys; 2001 Dec; 23(10):707-12. PubMed ID: 11801412
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Shoulder demands in manual wheelchair users across a spectrum of activities.
    Morrow MM; Hurd WJ; Kaufman KR; An KN
    J Electromyogr Kinesiol; 2010 Feb; 20(1):61-7. PubMed ID: 19269194
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Load on the shoulder in low intensity wheelchair propulsion.
    Veeger HE; Rozendaal LA; van der Helm FC
    Clin Biomech (Bristol, Avon); 2002 Mar; 17(3):211-8. PubMed ID: 11937259
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Physical strain and mechanical efficiency in hubcrank and handrim wheelchair propulsion.
    van der Woude LH; van Kranen E; Ariëns G; Rozendal RH; Veeger HE
    J Med Eng Technol; 1995; 19(4):123-31. PubMed ID: 8544207
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Shoulder model validation and joint contact forces during wheelchair activities.
    Morrow MM; Kaufman KR; An KN
    J Biomech; 2010 Sep; 43(13):2487-92. PubMed ID: 20840833
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of three different models to represent the wrist during wheelchair propulsion.
    Shimada SD; Cooper RA; Boninger ML; Koontz AM; Corfman TA
    IEEE Trans Neural Syst Rehabil Eng; 2001 Sep; 9(3):274-82. PubMed ID: 11561663
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.