These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 30440829)

  • 1. Eye-Hand Coordination Assessment Metrics Using a Multi-Platform Haptic System with Eye-Tracking and Motion Capture Feedback.
    Pernalete N; Raheja A; Segura M; Menychtas D; Wieczorek T; Carey S
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2150-2153. PubMed ID: 30440829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of an evaluation function for eye-hand coordination robotic therapy.
    Pernalete N; Tang F; Chang SM; Cheng FY; Vetter P; Stegemann M; Grantner J
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975423. PubMed ID: 22275624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of a haptic device with grasp and push-pull force feedback for a master-slave surgical robot.
    Hu Z; Yoon CH; Park SB; Jo YH
    Int J Comput Assist Radiol Surg; 2016 Jul; 11(7):1361-9. PubMed ID: 26646414
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Eye Tracking of Occluded Self-Moved Targets: Role of Haptic Feedback and Hand-Target Dynamics.
    Danion F; Mathew J; Flanagan JR
    eNeuro; 2017; 4(3):. PubMed ID: 28680964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving Haptic Response for Contextual Human Robot Interaction.
    Mugisha S; Guda VK; Chevallereau C; Zoppi M; Molfino R; Chablat D
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving manual skills in persons with disabilities (PWD) through a multimodal assistance system.
    Covarrubias M; Gatti E; Bordegoni M; Cugini U; Mansutti A
    Disabil Rehabil Assist Technol; 2014 Jul; 9(4):335-43. PubMed ID: 23692410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Planar hand motion guidance using fingertip skin-stretch feedback.
    Norman SL; Doxon AJ; Gleeson BT; Provancher WR
    IEEE Trans Haptics; 2014; 7(2):121-30. PubMed ID: 24968376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adding Haptic Feedback to Virtual Environments With a Cable-Driven Robot Improves Upper Limb Spatio-Temporal Parameters During a Manual Handling Task.
    Faure C; Fortin-Cote A; Robitaille N; Cardou P; Gosselin C; Laurendeau D; Mercier C; Bouyer L; McFadyen BJ
    IEEE Trans Neural Syst Rehabil Eng; 2020 Oct; 28(10):2246-2254. PubMed ID: 32877337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensing and Force-Feedback Exoskeleton (SAFE) Robotic Glove.
    Ben-Tzvi P; Ma Z
    IEEE Trans Neural Syst Rehabil Eng; 2015 Nov; 23(6):992-1002. PubMed ID: 25494512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved Mutual Understanding for Human-Robot Collaboration: Combining Human-Aware Motion Planning with Haptic Feedback Devices for Communicating Planned Trajectory.
    Grushko S; Vysocký A; Oščádal P; Vocetka M; Novák P; Bobovský Z
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34070528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Eye-Hand Coordination Patterns of Intermediate and Novice Surgeons in a Simulation-Based Endoscopic Surgery Training Environment.
    Topalli D; Cagiltay NE
    J Eye Mov Res; 2018 Nov; 11(6):. PubMed ID: 33828711
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and implementation of visual-haptic assistive control system for virtual rehabilitation exercise and teleoperation manipulation.
    Veras EJ; De Laurentis KJ; Dubey R
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4290-3. PubMed ID: 19163661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of haptic feedback in laparoscopic simulation training.
    Panait L; Akkary E; Bell RL; Roberts KE; Dudrick SJ; Duffy AJ
    J Surg Res; 2009 Oct; 156(2):312-6. PubMed ID: 19631336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A toolkit for haptic force feedback in a telerobotic ultrasound system.
    Fotouhi R; Najafi Semnani A; Zhang Q; Adams SJ; Obaid H
    BMC Res Notes; 2021 Oct; 14(1):393. PubMed ID: 34689794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of a new haptic device and experiments in minimally invasive surgical robot.
    Wang T; Pan B; Fu Y; Wang S; Ai Y
    Comput Assist Surg (Abingdon); 2017 Dec; 22(sup1):240-250. PubMed ID: 29072504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A one-DOF freehand haptic device for robotic tele-echography.
    Marchal M; Troccaz J
    Stud Health Technol Inform; 2004; 98():231-3. PubMed ID: 15544277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gaze Augmented Hand-Based Kinesthetic Interaction: What You See is What You Feel.
    Li Z; Akkil D; Raisamo R
    IEEE Trans Haptics; 2019; 12(2):114-127. PubMed ID: 30716049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of haptic devices and end-users: Novel performance metrics in tele-robotic microsurgery.
    Hoshyarmanesh H; Zareinia K; Lama S; Durante B; Sutherland GR
    Int J Med Robot; 2020 Aug; 16(4):e2101. PubMed ID: 32181954
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gaze and Movement Assessment (GaMA): Inter-site validation of a visuomotor upper limb functional protocol.
    Williams HE; Chapman CS; Pilarski PM; Vette AH; Hebert JS
    PLoS One; 2019; 14(12):e0219333. PubMed ID: 31887218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exodex Adam-A Reconfigurable Dexterous Haptic User Interface for the Whole Hand.
    Lii NY; Pereira A; Dietl J; Stillfried G; Schmidt A; Beik-Mohammadi H; Baker T; Maier A; Pleintinger B; Chen Z; Elawad A; Mentzer L; Pineault A; Reisich P; Albu-Schäffer A
    Front Robot AI; 2021; 8():716598. PubMed ID: 35309724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.