These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 30440909)

  • 1. Effect of Pelvic Movement on Healthy Subjects During Gait Training Using a Gait Rehabilitation System.
    Son C; Moon H; Kim D; Chun MH; Kim S; Choi J
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2475-2478. PubMed ID: 30440909
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of pelvic movements of a gait training system for stroke patients: a single blind, randomized, parallel study.
    Son C; Lee A; Lee J; Kim D; Kim SJ; Chun MH; Choi J
    J Neuroeng Rehabil; 2021 Dec; 18(1):185. PubMed ID: 34961541
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of Gait Rehabilitation System Capable of Assisting Pelvic Movement of Normal Walking.
    Jung C; Jung S; Chun MH; Lee JM; Park S; Kim SJ
    Acta Med Okayama; 2018 Aug; 72(4):407-417. PubMed ID: 30140090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electromyography Assessment During Gait in a Robotic Exoskeleton for Acute Stroke.
    Androwis GJ; Pilkar R; Ramanujam A; Nolan KJ
    Front Neurol; 2018; 9():630. PubMed ID: 30131756
    [No Abstract]   [Full Text] [Related]  

  • 5. Restriction of pelvic lateral and rotational motions alters lower limb kinematics and muscle activation pattern during over-ground walking.
    Mun KR; Guo Z; Yu H
    Med Biol Eng Comput; 2016 Nov; 54(11):1621-1629. PubMed ID: 26830107
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Altered muscle activation patterns (AMAP): an analytical tool to compare muscle activity patterns of hemiparetic gait with a normative profile.
    Srivastava S; Patten C; Kautz SA
    J Neuroeng Rehabil; 2019 Jan; 16(1):21. PubMed ID: 30704483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gait analysis before or after varus osteotomy of the femur for hip osteoarthritis.
    Watanabe H; Shimada Y; Sato K; Tsutsumi Y; Sato M
    Biomed Mater Eng; 1998; 8(3-4):177-86. PubMed ID: 10065884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Applying a pelvic corrective force induces forced use of the paretic leg and improves paretic leg EMG activities of individuals post-stroke during treadmill walking.
    Hsu CJ; Kim J; Tang R; Roth EJ; Rymer WZ; Wu M
    Clin Neurophysiol; 2017 Oct; 128(10):1915-1922. PubMed ID: 28826022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved walking ability with wearable robot-assisted training in patients suffering chronic stroke.
    Li L; Ding L; Chen N; Mao Y; Huang D; Li L
    Biomed Mater Eng; 2015; 26 Suppl 1():S329-40. PubMed ID: 26406020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined task-specific training and strengthening effects on locomotor recovery post-stroke: a case study.
    Sullivan K; Klassen T; Mulroy S
    J Neurol Phys Ther; 2006 Sep; 30(3):130-41. PubMed ID: 17029656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differences in muscle activity and temporal step parameters between Lokomat guided walking and treadmill walking in post-stroke hemiparetic patients and healthy walkers.
    van Kammen K; Boonstra AM; van der Woude LHV; Reinders-Messelink HA; den Otter R
    J Neuroeng Rehabil; 2017 Apr; 14(1):32. PubMed ID: 28427422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electromyographic biofeedback for gait training after stroke.
    Bradley L; Hart BB; Mandana S; Flowers K; Riches M; Sanderson P
    Clin Rehabil; 1998 Feb; 12(1):11-22. PubMed ID: 9549021
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantified electromyography of lower-limb muscles during level walking.
    Ericson MO; Nisell R; Ekholm J
    Scand J Rehabil Med; 1986; 18(4):159-63. PubMed ID: 3810082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A wearable resistive robot facilitates locomotor adaptations during gait.
    Washabaugh EP; Krishnan C
    Restor Neurol Neurosci; 2018; 36(2):215-223. PubMed ID: 29526856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanical effects of body weight support with a novel robotic walker for over-ground gait rehabilitation.
    Mun KR; Lim SB; Guo Z; Yu H
    Med Biol Eng Comput; 2017 Feb; 55(2):315-326. PubMed ID: 27193227
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Can Lokomat therapy with children and adolescents be improved? An adaptive clinical pilot trial comparing Guidance force, Path control, and FreeD.
    Aurich-Schuler T; Grob F; van Hedel HJA; Labruyère R
    J Neuroeng Rehabil; 2017 Jul; 14(1):76. PubMed ID: 28705170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gait pattern of severely disabled hemiparetic subjects on a new controlled gait trainer as compared to assisted treadmill walking with partial body weight support.
    Hesse S; Uhlenbrock D; Sarkodie-Gyan T
    Clin Rehabil; 1999 Oct; 13(5):401-10. PubMed ID: 10498347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combined Visual Feedback with Pelvic Assistance Force Improves Step Length during treadmill walking in Individuals with Post-Stroke Hemiparesis.
    Hsu CJ; Kim J; Wu M
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2333-2336. PubMed ID: 30440874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficacy of the Regent Suit-based rehabilitation on gait EMG patterns in hemiparetic subjects: a pilot study.
    Iuppariello L; D'addio G; Romano M; Bifulco P; Pappone N; Lanzillo B; Cesarelli M
    Eur J Phys Rehabil Med; 2018 Oct; 54(5):705-716. PubMed ID: 29333801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.