These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 30440911)
1. Speaking Ability while Using an Inductive Tongue-Computer Interface for Individuals with Tetraplegia: Talking and Driving a Powered Wheelchair - a Case Study. Struijk LNSA; Bentsen B; Gaihede M; Lontis R Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2483-2486. PubMed ID: 30440911 [TBL] [Abstract][Full Text] [Related]
2. Wireless intraoral tongue control of an assistive robotic arm for individuals with tetraplegia. Andreasen Struijk LNS; Egsgaard LL; Lontis R; Gaihede M; Bentsen B J Neuroeng Rehabil; 2017 Nov; 14(1):110. PubMed ID: 29110736 [TBL] [Abstract][Full Text] [Related]
3. Development and functional demonstration of a wireless intraoral inductive tongue computer interface for severely disabled persons. N S Andreasen Struijk L; Lontis ER; Gaihede M; Caltenco HA; Lund ME; Schioeler H; Bentsen B Disabil Rehabil Assist Technol; 2017 Aug; 12(6):631-640. PubMed ID: 27678024 [TBL] [Abstract][Full Text] [Related]
4. Inductive tongue control of powered wheelchairs. Lund ME; Christiensen HV; Caltenco HA; Lontis ER; Bentsen B; Andreasen Struijk LN Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3361-4. PubMed ID: 21097235 [TBL] [Abstract][Full Text] [Related]
5. Assessment of the Tongue-Drive System Using a Computer, a Smartphone, and a Powered-Wheelchair by People With Tetraplegia. Kim J; Park H; Bruce J; Rowles D; Holbrook J; Nardone B; West DP; Laumann A; Roth EJ; Ghovanloo M IEEE Trans Neural Syst Rehabil Eng; 2016 Jan; 24(1):68-78. PubMed ID: 25730827 [TBL] [Abstract][Full Text] [Related]
6. Usability of the inductive tongue computer interface: Internet use, speaking, and drinking - evaluated by two users with disabilities. Andreasen Struijk LNS; Bentsen B; Gaihede M; Lontis RE Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083736 [TBL] [Abstract][Full Text] [Related]
7. Error-Free Text Typing Performance of an Inductive Intra-Oral Tongue Computer Interface for Severely Disabled Individuals. Andreasen Struijk LNS; Bentsen B; Gaihede M; Lontis ER IEEE Trans Neural Syst Rehabil Eng; 2017 Nov; 25(11):2094-2104. PubMed ID: 28541213 [TBL] [Abstract][Full Text] [Related]
8. TongueWise: Tongue-computer interface software for people with tetraplegia. Caltenco HA; Andreasen Struijk LN; Breidegard B Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4534-7. PubMed ID: 21095789 [TBL] [Abstract][Full Text] [Related]
9. On the change in Speech Quality and Speed with a Tongue Interface for Control of Rehabilitation Robotics - A Case report. Bentsen B; Lontis R; Gaihede M; Palsdottir AA; Andreasen Struijk LNS IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-3. PubMed ID: 36176115 [TBL] [Abstract][Full Text] [Related]
10. Development of inductive sensors for a robotic interface based on noninvasive tongue control. Kirtas O; Veltink P; Lontis R; Mohammadi M; Andreasen Struijk LNS IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176082 [TBL] [Abstract][Full Text] [Related]
11. Effects of sensory feedback in intra-oral target selection tasks with the tongue. Caltenco HA; Lontis ER; Bentsen B; Andreasen Struijk LN Disabil Rehabil Assist Technol; 2013 Jul; 8(4):330-9. PubMed ID: 22779705 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of a smartphone platform as a wireless interface between tongue drive system and electric-powered wheelchairs. Kim J; Huo X; Minocha J; Holbrook J; Laumann A; Ghovanloo M IEEE Trans Biomed Eng; 2012 Jun; 59(6):1787-96. PubMed ID: 22531737 [TBL] [Abstract][Full Text] [Related]
13. A Stand-Alone Intraoral Tongue-Controlled Computer Interface for People With Tetraplegia. Kong F; Sahadat MN; Ghovanloo M; Durgin GD IEEE Trans Biomed Circuits Syst; 2019 Oct; 13(5):848-857. PubMed ID: 31283486 [TBL] [Abstract][Full Text] [Related]
14. Alternative design of inductive pointing device for oral interface for computers and wheelchairs. Lontis ER; Andreasen Struijk LN Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():3328-31. PubMed ID: 23366638 [TBL] [Abstract][Full Text] [Related]
15. On the tip of the tongue: learning typing and pointing with an intra-oral computer interface. Caltenco HA; Breidegard B; Struijk LN Disabil Rehabil Assist Technol; 2014 Jul; 9(4):307-17. PubMed ID: 23931550 [TBL] [Abstract][Full Text] [Related]
16. Experiment on a novel user input for computer interface utilizing tongue input for the severely disabled. Kencana AP; Heng J Disabil Rehabil Assist Technol; 2008 Nov; 3(6):351-9. PubMed ID: 19117196 [TBL] [Abstract][Full Text] [Related]
17. Steer by ear: Myoelectric auricular control of powered wheelchairs for individuals with spinal cord injury. Schmalfuß L; Rupp R; Tuga MR; Kogut A; Hewitt M; Meincke J; Klinker F; Duttenhoefer W; Eck U; Mikut R; Reischl M; Liebetanz D Restor Neurol Neurosci; 2016; 34(1):79-95. PubMed ID: 26599475 [TBL] [Abstract][Full Text] [Related]
18. Design of inductive sensors for tongue control system for computers and assistive devices. Lontis ER; Struijk LN Disabil Rehabil Assist Technol; 2010 Jul; 5(4):266-71. PubMed ID: 20307253 [TBL] [Abstract][Full Text] [Related]
19. ZigBee-based wireless intra-oral control system for quadriplegic patients. Peng Q; Budinger TF Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1647-50. PubMed ID: 18002289 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of a wireless wearable tongue-computer interface by individuals with high-level spinal cord injuries. Huo X; Ghovanloo M J Neural Eng; 2010 Apr; 7(2):26008. PubMed ID: 20332552 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]