BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 30440963)

  • 1. Mathematical Modeling of Arterial Blood Pressure Using Photo- Plethysmography Signal in Breath-hold Maneuver.
    Zadi AS; Alex RM; Zhang R; Watenpaugh DE; Behbehani K
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2711-2714. PubMed ID: 30440963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arterial blood pressure feature estimation using photoplethysmography.
    Soltan Zadi A; Alex R; Zhang R; Watenpaugh DE; Behbehani K
    Comput Biol Med; 2018 Nov; 102():104-111. PubMed ID: 30261404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of cerebral blood flow velocity during breath-hold challenge using artificial neural networks.
    Al-Abed MA; Al-Bashir AK; Al-Rawashdeh A; Alex RM; Zhang R; Watenpaugh DE; Behbehani K
    Comput Biol Med; 2019 Dec; 115():103508. PubMed ID: 31698237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Continuous Blood Pressure Estimation Method Using Photoplethysmography by GRNN-Based Model.
    Li Z; He W
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Estimation Method of Continuous Non-Invasive Arterial Blood Pressure Waveform Using Photoplethysmography: A U-Net Architecture-Based Approach.
    Athaya T; Choi S
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33800106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic Estimation of Cerebral Blood Flow Using Photoplethysmography Signal during Simulated Apnea.
    Soltan Zadi A; Alex RM; Zhang R; Watenpaugh DE; Behbehani K
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5727-5730. PubMed ID: 31947153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoplethysmography derivatives and pulse transit time in overnight blood pressure monitoring.
    Shahrbabaki SS; Ahmed B; Penzel T; Cvetkovic D
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():2855-2858. PubMed ID: 28268912
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characters available in photoplethysmogram for blood pressure estimation: beyond the pulse transit time.
    Li Y; Wang Z; Zhang L; Yang X; Song J
    Australas Phys Eng Sci Med; 2014 Jun; 37(2):367-76. PubMed ID: 24722801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systolic blood pressure estimation using PPG and ECG during physical exercise.
    Sun S; Bezemer R; Long X; Muehlsteff J; Aarts RM
    Physiol Meas; 2016 Dec; 37(12):2154-2169. PubMed ID: 27841157
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimating blood pressure trends and the nocturnal dip from photoplethysmography.
    Radha M; de Groot K; Rajani N; Wong CCP; Kobold N; Vos V; Fonseca P; Mastellos N; Wark PA; Velthoven N; Haakma R; Aarts RM
    Physiol Meas; 2019 Feb; 40(2):025006. PubMed ID: 30699397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Blood Pressure Estimation Using Photoplethysmography Only: Comparison between Different Machine Learning Approaches.
    Khalid SG; Zhang J; Chen F; Zheng D
    J Healthc Eng; 2018; 2018():1548647. PubMed ID: 30425819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using a new PPG indicator to increase the accuracy of PTT-based continuous cuffless blood pressure estimation.
    Wan-Hua Lin ; Hui Wang ; Samuel OW; Guanglin Li
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():738-741. PubMed ID: 29059978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous PPG-Based Blood Pressure Monitoring Using Multi-Linear Regression.
    Haddad S; Boukhayma A; Caizzone A
    IEEE J Biomed Health Inform; 2022 May; 26(5):2096-2105. PubMed ID: 34784288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel blood pressure estimation method using single photoplethysmography feature.
    Yang Chen ; Shuo Cheng ; Tong Wang ; Ting Ma
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1712-1715. PubMed ID: 29060216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advanced Volume-Compensation Method for Indirect Finger Arterial Pressure Determination: Comparison with Brachial Sphygmomanometry.
    Matsumura K; Yamakoshi T; Rolfe P; Yamakoshi KI
    IEEE Trans Biomed Eng; 2017 May; 64(5):1131-1137. PubMed ID: 27429430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cuffless Blood Pressure Estimation Based on Monte Carlo Simulation Using Photoplethysmography Signals.
    Haque CA; Kwon TH; Kim KD
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35161920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Cuffless Blood Pressure Measurement with Multi-dimension Regression Model based on Characteristics of Pulse Waveform.
    Liu SH; Lai SH; Wang JJ; Tan TH; Huang YF
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6838-6841. PubMed ID: 31947411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined deep CNN-LSTM network-based multitasking learning architecture for noninvasive continuous blood pressure estimation using difference in ECG-PPG features.
    Jeong DU; Lim KM
    Sci Rep; 2021 Jun; 11(1):13539. PubMed ID: 34188132
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cuff-less Blood Pressure Measurement Using Supplementary ECG and PPG Features Extracted Through Wavelet Transformation.
    Singla M; Sistla P; Azeemuddin S
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4628-4631. PubMed ID: 31946895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New photoplethysmogram indicators for improving cuffless and continuous blood pressure estimation accuracy.
    Lin WH; Wang H; Samuel OW; Liu G; Huang Z; Li G
    Physiol Meas; 2018 Feb; 39(2):025005. PubMed ID: 29319536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.