These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 30440963)

  • 21. Genetic Deep Convolutional Autoencoder Applied for Generative Continuous Arterial Blood Pressure via Photoplethysmography.
    Sadrawi M; Lin YT; Lin CH; Mathunjwa B; Fan SZ; Abbod MF; Shieh JS
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32660088
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cuff-Less Blood Pressure Estimation via Small Convolutional Neural Networks.
    Wang W; Mohseni P; Kilgore K; Najafizadeh L
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1031-1034. PubMed ID: 34891464
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Continuous and noninvasive measurement of systolic and diastolic blood pressure by one mathematical model with the same model parameters and two separate pulse wave velocities.
    Chen Y; Wen C; Tao G; Bi M
    Ann Biomed Eng; 2012 Apr; 40(4):871-82. PubMed ID: 22101758
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bi-Modal Arterial Compliance Probe for Calibration-Free Cuffless Blood Pressure Estimation.
    P M N; Joseph J; Karthik S; Sivaprakasam M; Chenniappan M
    IEEE Trans Biomed Eng; 2018 Nov; 65(11):2392-2404. PubMed ID: 30130174
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Validation of the inverse pulse wave transit time series as surrogate of systolic blood pressure in MVAR modeling.
    Giassi P; Okida S; Oliveira MG; Moraes R
    IEEE Trans Biomed Eng; 2013 Nov; 60(11):3176-84. PubMed ID: 23799681
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Continuous Blood Pressure Estimation From Non-Invasive Measurements Using Support Vector Regression.
    Rastegar A S; GholamHosseini A H; Lowe A A; Linden B M
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1487-1490. PubMed ID: 34891566
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Robust blood pressure estimation from finger photoplethysmography using age-dependent linear models.
    Xing X; Ma Z; Zhang M; Gao X; Li Y; Song M; Dong WF
    Physiol Meas; 2020 Mar; 41(2):025007. PubMed ID: 32050194
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Beat-to-Beat Continuous Blood Pressure Estimation Using Bidirectional Long Short-Term Memory Network.
    Lee D; Kwon H; Son D; Eom H; Park C; Lim Y; Seo C; Park K
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33375722
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Highly wearable cuff-less blood pressure and heart rate monitoring with single-arm electrocardiogram and photoplethysmogram signals.
    Zhang Q; Zhou D; Zeng X
    Biomed Eng Online; 2017 Feb; 16(1):23. PubMed ID: 28166774
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Data-driven estimation of blood pressure using photoplethysmographic signals.
    Shi Chao Gao ; Wittek P; Li Zhao ; Wen Jun Jiang
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():766-769. PubMed ID: 28324937
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pulse transit time measured from the ECG: an unreliable marker of beat-to-beat blood pressure.
    Payne RA; Symeonides CN; Webb DJ; Maxwell SR
    J Appl Physiol (1985); 2006 Jan; 100(1):136-41. PubMed ID: 16141378
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prediction of arterial blood pressure waveforms from photoplethysmogram signals via fully convolutional neural networks.
    Cheng J; Xu Y; Song R; Liu Y; Li C; Chen X
    Comput Biol Med; 2021 Nov; 138():104877. PubMed ID: 34571436
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transmission of calibration errors (input) by generalized transfer functions to the aortic pressures (output) at different hemodynamic states.
    Papaioannou TG; Lekakis JP; Karatzis EN; Papamichael CM; Stamatelopoulos KS; Protogerou AD; Mavrikakis M; Stefanadis C
    Int J Cardiol; 2006 Jun; 110(1):46-52. PubMed ID: 16229910
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Learning-Based Model for Central Blood Pressure Estimation using Feature Extracted from ECG and PPG signals.
    Singla M; Azeemuddin S; Sistla P
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():855-858. PubMed ID: 33018119
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Non-Invasive Continuous Blood-Pressure Monitoring Models Based on Photoplethysmography and Electrocardiography.
    Wu H; Ji Z; Li M
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31847474
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Study of continuous blood pressure estimation based on pulse transit time, heart rate and photoplethysmography-derived hemodynamic covariates.
    Feng J; Huang Z; Zhou C; Ye X
    Australas Phys Eng Sci Med; 2018 Jun; 41(2):403-413. PubMed ID: 29633173
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recurrent Neural Network Models for Blood Pressure Monitoring Using PPG Morphological Features.
    El Hajj C; Kyriacou PA
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1865-1868. PubMed ID: 34891651
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Noninvasive blood oxygen, heartbeat rate, and blood pressure parameter monitoring by photoplethysmography signals.
    Ku CJ; Wang Y; Chang CY; Wu MT; Dai ST; Liao LD
    Heliyon; 2022 Nov; 8(11):e11698. PubMed ID: 36458306
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cuffless blood-pressure estimation method using a heart-rate variability-derived parameter.
    Chen Y; Shi S; Liu YK; Huang SL; Ma T
    Physiol Meas; 2018 Sep; 39(9):095002. PubMed ID: 30089101
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Feasibility study for the non-invasive blood pressure estimation based on ppg morphology: normotensive subject study.
    Shin H; Min SD
    Biomed Eng Online; 2017 Jan; 16(1):10. PubMed ID: 28086939
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.