These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 30440982)
1. A Velocity-Based Flow Field Control Approach for Reshaping Movement of Stroke-Impaired Individuals with a Lower-Limb Exoskeleton. Martinez A; Lawson B; Goldfarb M Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2797-2800. PubMed ID: 30440982 [TBL] [Abstract][Full Text] [Related]
2. Preliminary assessment of a lower-limb exoskeleton controller for guiding leg movement in overground walking. Martinez A; Lawson B; Goldfarb M IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():375-380. PubMed ID: 28813848 [TBL] [Abstract][Full Text] [Related]
3. A Single-Joint Implementation of Flow Control: Knee Joint Walking Assistance for Individuals With Mobility Impairment. Martinez A; Durrough C; Goldfarb M IEEE Trans Neural Syst Rehabil Eng; 2020 Apr; 28(4):934-942. PubMed ID: 32142447 [TBL] [Abstract][Full Text] [Related]
4. An assistive control approach for a lower-limb exoskeleton to facilitate recovery of walking following stroke. Murray SA; Ha KH; Hartigan C; Goldfarb M IEEE Trans Neural Syst Rehabil Eng; 2015 May; 23(3):441-9. PubMed ID: 25134084 [TBL] [Abstract][Full Text] [Related]
5. The H2 robotic exoskeleton for gait rehabilitation after stroke: early findings from a clinical study. Bortole M; Venkatakrishnan A; Zhu F; Moreno JC; Francisco GE; Pons JL; Contreras-Vidal JL J Neuroeng Rehabil; 2015 Jun; 12():54. PubMed ID: 26076696 [TBL] [Abstract][Full Text] [Related]
6. Mechanics and energetics of post-stroke walking aided by a powered ankle exoskeleton with speed-adaptive myoelectric control. McCain EM; Dick TJM; Giest TN; Nuckols RW; Lewek MD; Saul KR; Sawicki GS J Neuroeng Rehabil; 2019 May; 16(1):57. PubMed ID: 31092269 [TBL] [Abstract][Full Text] [Related]
7. Kinematics study of a 10 degrees-of-freedom lower extremity exoskeleton for crutch-less walking rehabilitation. Liu J; He Y; Li F; Cao W; Wu X Technol Health Care; 2022; 30(3):747-755. PubMed ID: 34486995 [TBL] [Abstract][Full Text] [Related]
8. An assistive controller for a lower-limb exoskeleton for rehabilitation after stroke, and preliminary assessment thereof. Murray SA; Ha KH; Goldfarb M Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():4083-6. PubMed ID: 25570889 [TBL] [Abstract][Full Text] [Related]
9. [Research status of lower limb exoskeleton rehabilitation robot]. Li M; Li H; Yu H Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2024 Aug; 41(4):833-839. PubMed ID: 39218611 [TBL] [Abstract][Full Text] [Related]
10. Tripping Avoidance Lower Extremity Exoskeleton Based on Virtual Potential Field for Elderly People. Zhang Z; Li C; Zheng T; Li H; Zhao S; Zhao J; Zhu Y Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33076576 [TBL] [Abstract][Full Text] [Related]
11. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton. Proietti T; Guigon E; Roby-Brami A; Jarrassé N J Neuroeng Rehabil; 2017 Jun; 14(1):55. PubMed ID: 28606179 [TBL] [Abstract][Full Text] [Related]
12. Pilot Study of a Powered Exoskeleton for Upper Limb Rehabilitation Based on the Wheelchair. Meng Q; Xie Q; Shao H; Cao W; Wang F; Wang L; Yu H; Li S Biomed Res Int; 2019; 2019():9627438. PubMed ID: 31976331 [TBL] [Abstract][Full Text] [Related]
13. Template model inspired leg force feedback based control can assist human walking. Zhao G; Sharbafi M; Vlutters M; van Asseldonk E; Seyfarth A IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():473-478. PubMed ID: 28813865 [TBL] [Abstract][Full Text] [Related]
14. Robust walking control of a lower limb rehabilitation exoskeleton coupled with a musculoskeletal model via deep reinforcement learning. Luo S; Androwis G; Adamovich S; Nunez E; Su H; Zhou X J Neuroeng Rehabil; 2023 Mar; 20(1):34. PubMed ID: 36935514 [TBL] [Abstract][Full Text] [Related]
15. Design and evaluation of a modular lower limb exoskeleton for rehabilitation. Dos Santos WM; Nogueira SL; de Oliveira GC; Pena GG; Siqueira AAG IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():447-451. PubMed ID: 28813860 [TBL] [Abstract][Full Text] [Related]
16. Development of a powered variable-stiffness exoskeleton device for elbow rehabilitation. Liu Y; Guo S; Hirata H; Ishihara H; Tamiya T Biomed Microdevices; 2018 Aug; 20(3):64. PubMed ID: 30074095 [TBL] [Abstract][Full Text] [Related]
17. A Unified Gait Phase Estimation and Control of Exoskeleton using Virtual Energy Regulator (VER). Nasiri R; Dinovitzer H; Arami A IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176167 [TBL] [Abstract][Full Text] [Related]
18. A Kinematic Model of a Humanoid Lower Limb Exoskeleton with Hydraulic Actuators. Glowinski S; Krzyzynski T; Bryndal A; Maciejewski I Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33121194 [TBL] [Abstract][Full Text] [Related]
19. Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton. Koller JR; Jacobs DA; Ferris DP; Remy CD J Neuroeng Rehabil; 2015 Nov; 12():97. PubMed ID: 26536868 [TBL] [Abstract][Full Text] [Related]
20. Design and kinematic analysis of a novel upper limb exoskeleton for rehabilitation of stroke patients. Zeiaee A; Soltani-Zarrin R; Langari R; Tafreshi R IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():759-764. PubMed ID: 28813911 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]