BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 30440983)

  • 1. Repeatability of EMG activity during exoskeleton assisted walking in children with cerebral palsy: implications for real time adaptable control.
    Bulea TC; Lerner ZF; Damiano DL
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2801-2804. PubMed ID: 30440983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effectiveness of robotic exoskeletons for improving gait in children with cerebral palsy: A systematic review.
    Hunt M; Everaert L; Brown M; Muraru L; Hatzidimitriadou E; Desloovere K
    Gait Posture; 2022 Oct; 98():343-354. PubMed ID: 36306544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Robotic Exoskeleton for Treatment of Crouch Gait in Children With Cerebral Palsy: Design and Initial Application.
    Lerner ZF; Damiano DL; Park HS; Gravunder AJ; Bulea TC
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):650-659. PubMed ID: 27479974
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A robotic exoskeleton to treat crouch gait from cerebral palsy: Initial kinematic and neuromuscular evaluation.
    Lerner ZF; Damiano DL; Bulea TC
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():2214-2217. PubMed ID: 28324959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A lower-extremity exoskeleton improves knee extension in children with crouch gait from cerebral palsy.
    Lerner ZF; Damiano DL; Bulea TC
    Sci Transl Med; 2017 Aug; 9(404):. PubMed ID: 28835518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Validating Model-Based Prediction Of Biological Knee Moment During Walking With An Exoskeleton in Crouch Gait: Potential Application for Exoskeleton Control.
    Chen J; Damiano DL; Lerner ZF; Bulea TC
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():778-783. PubMed ID: 31374725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive ankle exoskeleton gait training demonstrates acute neuromuscular and spatiotemporal benefits for individuals with cerebral palsy: A pilot study.
    Fang Y; Orekhov G; Lerner ZF
    Gait Posture; 2022 Jun; 95():256-263. PubMed ID: 33248858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Effects of Exoskeleton Assisted Knee Extension on Lower-Extremity Gait Kinematics, Kinetics, and Muscle Activity in Children with Cerebral Palsy.
    Lerner ZF; Damiano DL; Bulea TC
    Sci Rep; 2017 Oct; 7(1):13512. PubMed ID: 29044202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward a hybrid exoskeleton for crouch gait in children with cerebral palsy: neuromuscular electrical stimulation for improved knee extension.
    Shideler BL; Bulea TC; Chen J; Stanley CJ; Gravunder AJ; Damiano DL
    J Neuroeng Rehabil; 2020 Sep; 17(1):121. PubMed ID: 32883297
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship between assistive torque and knee biomechanics during exoskeleton walking in individuals with crouch gait.
    Lerner ZF; Damiano DL; Bulea TC
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():491-497. PubMed ID: 28813868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of ankle exoskeleton assistance and plantar pressure biofeedback on incline walking mechanics and muscle activity in cerebral palsy.
    Fang Y; Lerner ZF
    J Biomech; 2024 Jan; 163():111944. PubMed ID: 38219555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gait improvements by assisting hip movements with the robot in children with cerebral palsy: a pilot randomized controlled trial.
    Kawasaki S; Ohata K; Yoshida T; Yokoyama A; Yamada S
    J Neuroeng Rehabil; 2020 Jul; 17(1):87. PubMed ID: 32620131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feasibility of Augmenting Ankle Exoskeleton Walking Performance With Step Length Biofeedback in Individuals With Cerebral Palsy.
    Fang Y; Lerner ZF
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():442-449. PubMed ID: 33523814
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Pediatric Knee Exoskeleton With Real-Time Adaptive Control for Overground Walking in Ambulatory Individuals With Cerebral Palsy.
    Chen J; Hochstein J; Kim C; Tucker L; Hammel LE; Damiano DL; Bulea TC
    Front Robot AI; 2021; 8():702137. PubMed ID: 34222356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exergaming with a pediatric exoskeleton: Facilitating rehabilitation and research in children with cerebral palsy.
    Bulea TC; Lerner ZF; Gravunder AJ; Damiano DL
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1087-1093. PubMed ID: 28813966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ankle Exoskeleton Assistance Can Improve Over-Ground Walking Economy in Individuals With Cerebral Palsy.
    Orekhov G; Fang Y; Luque J; Lerner ZF
    IEEE Trans Neural Syst Rehabil Eng; 2020 Feb; 28(2):461-467. PubMed ID: 31940542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amplitude and stride-to-stride variability of muscle activity during Lokomat guided walking and treadmill walking in children with cerebral palsy.
    van Kammen K; Reinders-Messelink HA; Elsinghorst AL; Wesselink CF; Meeuwisse-de Vries B; van der Woude LHV; Boonstra AM; den Otter R
    Eur J Paediatr Neurol; 2020 Nov; 29():108-117. PubMed ID: 32900595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving the Energy Cost of Incline Walking and Stair Ascent With Ankle Exoskeleton Assistance in Cerebral Palsy.
    Fang Y; Orekhov G; Lerner ZF
    IEEE Trans Biomed Eng; 2022 Jul; 69(7):2143-2152. PubMed ID: 34941495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of biomechanical gait parameters of patients with Cerebral Palsy at three different levels of gait assistance using the CPWalker.
    Aycardi LF; Cifuentes CA; Múnera M; Bayón C; Ramírez O; Lerma S; Frizera A; Rocon E
    J Neuroeng Rehabil; 2019 Jan; 16(1):15. PubMed ID: 30691493
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational modeling of neuromuscular response to swing-phase robotic knee extension assistance in cerebral palsy.
    Lerner ZF; Damiano DL; Bulea TC
    J Biomech; 2019 Apr; 87():142-149. PubMed ID: 30862380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.