BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 30440984)

  • 1. Mechanisms for improving walking speed after longitudinal powered robotic exoskeleton training for individuals with spinal cord injury.
    Ramanujam A; Momeni K; Husain SR; Augustine J; Garbarini E; Barrance P; Spungen A; Asselin P; Knezevic S; Forrest GF
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2805-2808. PubMed ID: 30440984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Exoskeleton Training Intervention on Net Loading Force in Chronic Spinal Cord Injury.
    Husain SR; Ramanujam A; Momeni K; Forrest GF
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2793-2796. PubMed ID: 30440981
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomechanical differences between able-bodied and spinal cord injured individuals walking in an overground robotic exoskeleton.
    Hayes SC; White M; Wilcox CRJ; White HSF; Vanicek N
    PLoS One; 2022; 17(1):e0262915. PubMed ID: 35085340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A biomechanical comparison of powered robotic exoskeleton gait with normal and slow walking: An investigation with able-bodied individuals.
    Hayes SC; White M; White HSF; Vanicek N
    Clin Biomech (Bristol, Avon); 2020 Dec; 80():105133. PubMed ID: 32777685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuromechanical adaptations during a robotic powered exoskeleton assisted walking session.
    Ramanujam A; Cirnigliaro CM; Garbarini E; Asselin P; Pilkar R; Forrest GF
    J Spinal Cord Med; 2018 Sep; 41(5):518-528. PubMed ID: 28427305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Initial Outcomes from a Multicenter Study Utilizing the Indego Powered Exoskeleton in Spinal Cord Injury.
    Tefertiller C; Hays K; Jones J; Jayaraman A; Hartigan C; Bushnik T; Forrest GF
    Top Spinal Cord Inj Rehabil; 2018; 24(1):78-85. PubMed ID: 29434463
    [No Abstract]   [Full Text] [Related]  

  • 7. Cardiopulmonary function after robotic exoskeleton-assisted over-ground walking training of a patient with an incomplete spinal cord injury: Case report.
    Jang YC; Park HK; Han JY; Choi IS; Song MK
    Medicine (Baltimore); 2019 Dec; 98(50):e18286. PubMed ID: 31852105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gait speed using powered robotic exoskeletons after spinal cord injury: a systematic review and correlational study.
    Louie DR; Eng JJ; Lam T;
    J Neuroeng Rehabil; 2015 Oct; 12():82. PubMed ID: 26463355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multicentric investigation on the safety, feasibility and usability of the ABLE lower-limb robotic exoskeleton for individuals with spinal cord injury: a framework towards the standardisation of clinical evaluations.
    Wright MA; Herzog F; Mas-Vinyals A; Carnicero-Carmona A; Lobo-Prat J; Hensel C; Franz S; Weidner N; Vidal J; Opisso E; Rupp R
    J Neuroeng Rehabil; 2023 Apr; 20(1):45. PubMed ID: 37046307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assistive powered exoskeleton for complete spinal cord injury: correlations between walking ability and exoskeleton control.
    Guanziroli E; Cazzaniga M; Colombo L; Basilico S; Legnani G; Molteni F
    Eur J Phys Rehabil Med; 2019 Apr; 55(2):209-216. PubMed ID: 30156088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Locomotor training using an overground robotic exoskeleton in long-term manual wheelchair users with a chronic spinal cord injury living in the community: Lessons learned from a feasibility study in terms of recruitment, attendance, learnability, performance and safety.
    Gagnon DH; Escalona MJ; Vermette M; Carvalho LP; Karelis AD; Duclos C; Aubertin-Leheudre M
    J Neuroeng Rehabil; 2018 Mar; 15(1):12. PubMed ID: 29490678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vertical ground reaction force-based analysis of powered exoskeleton-assisted walking in persons with motor-complete paraplegia.
    Fineberg DB; Asselin P; Harel NY; Agranova-Breyter I; Kornfeld SD; Bauman WA; Spungen AM
    J Spinal Cord Med; 2013 Jul; 36(4):313-21. PubMed ID: 23820147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Budget impact analysis of robotic exoskeleton use for locomotor training following spinal cord injury in four SCI Model Systems.
    Pinto D; Garnier M; Barbas J; Chang SH; Charlifue S; Field-Fote E; Furbish C; Tefertiller C; Mummidisetty CK; Taylor H; Jayaraman A; Heinemann AW
    J Neuroeng Rehabil; 2020 Jan; 17(1):4. PubMed ID: 31924224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gait training with Achilles ankle exoskeleton in chronic incomplete spinal cord injury subjects.
    Tamburella F; Tagliamonte NL; Masciullo M; Pisotta I; Arquilla M; van Asseldonk EHF; van der Kooij H; Wu AR; Dzeladini F; Ijspeert AJ; Molinari M
    J Biol Regul Homeost Agents; 2020; 34(5 Suppl. 3):147-164. Technology in Medicine. PubMed ID: 33386045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of VariLeg, an exoskeleton with variable stiffness actuation: first results and user evaluation from the CYBATHLON 2016.
    Schrade SO; Dätwyler K; Stücheli M; Studer K; Türk DA; Meboldt M; Gassert R; Lambercy O
    J Neuroeng Rehabil; 2018 Mar; 15(1):18. PubMed ID: 29534730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Symbitron Exoskeleton: Design, Control, and Evaluation of a Modular Exoskeleton for Incomplete and Complete Spinal Cord Injured Individuals.
    Meijneke C; van Oort G; Sluiter V; van Asseldonk E; Tagliamonte NL; Tamburella F; Pisotta I; Masciullo M; Arquilla M; Molinari M; Wu AR; Dzeladini F; Ijspeert AJ; van der Kooij H
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():330-339. PubMed ID: 33417559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cardiorespiratory Responses to 10 Weeks of Exoskeleton-Assisted Overground Walking Training in Chronic Nonambulatory Patients with Spinal Cord Injury.
    Park JH; Kim HS; Jang SH; Hyun DJ; Park SI; Yoon J; Lim H; Kim MJ
    Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of gait training using powered lower limb exoskeleton robot on individuals with complete spinal cord injury.
    Wu CH; Mao HF; Hu JS; Wang TY; Tsai YJ; Hsu WL
    J Neuroeng Rehabil; 2018 Mar; 15(1):14. PubMed ID: 29506530
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of robot assisted gait training on temporal-spatial characteristics of people with spinal cord injuries: A systematic review.
    Hayes SC; James Wilcox CR; Forbes White HS; Vanicek N
    J Spinal Cord Med; 2018 Sep; 41(5):529-543. PubMed ID: 29400988
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mobility Outcomes Following Five Training Sessions with a Powered Exoskeleton.
    Hartigan C; Kandilakis C; Dalley S; Clausen M; Wilson E; Morrison S; Etheridge S; Farris R
    Top Spinal Cord Inj Rehabil; 2015; 21(2):93-9. PubMed ID: 26364278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.