These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 30441015)
1. Low temperature approach for high density electrical feedthroughs for neural implants using maskless fabrication techniques. Langenmair M; Martens J; Gierthmuehlen M; Plachta DTT; Stieglitz T Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2933-2936. PubMed ID: 30441015 [TBL] [Abstract][Full Text] [Related]
2. Fabrication and test of a hermetic miniature implant package with 360 electrical feedthroughs. Schuettler M; Ordonez JS; Silva Santisteban T; Schatz A; Wilde J; Stieglitz T Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1585-8. PubMed ID: 21096387 [TBL] [Abstract][Full Text] [Related]
3. Chip-scale hermetic feedthroughs for implantable bionics. Guenther T; Dodds CW; Lovell NH; Suaning GJ Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6717-20. PubMed ID: 22255880 [TBL] [Abstract][Full Text] [Related]
4. Pt-Al2O3 interfaces in cofired ceramics for use in miniaturized neuroprosthetic implants. Guenther T; Kong C; Lu H; Svehla MJ; Lovell NH; Ruys A; Suaning GJ J Biomed Mater Res B Appl Biomater; 2014 Apr; 102(3):500-7. PubMed ID: 24106159 [TBL] [Abstract][Full Text] [Related]
5. Chronically Implantable Package Based on Alumina Ceramics and Titanium with High-density Feedthroughs for Medical Implants. Yang H; Wu T; Zhao S; Xiong S; Peng B; Humayun MS Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():3382-3385. PubMed ID: 30441113 [TBL] [Abstract][Full Text] [Related]
6. Investigation on the hermeticity of an implantable package with 32 feedthroughs for neural prosthetic applications. Bisoni L; Mueller M; Cvancara P; Carboni C; Puddu R; Raffo L; Barbaro M; Stieglitz T Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1967-1970. PubMed ID: 28268714 [TBL] [Abstract][Full Text] [Related]
7. An all-diamond, hermetic electrical feedthrough array for a retinal prosthesis. Ganesan K; Garrett DJ; Ahnood A; Shivdasani MN; Tong W; Turnley AM; Fox K; Meffin H; Prawer S Biomaterials; 2014 Jan; 35(3):908-15. PubMed ID: 24383127 [TBL] [Abstract][Full Text] [Related]
8. Laser fabrication of electrical feedthroughs in polymer encapsulations for active implantable medical devices. Gough Z; Chaminade C; Barclay-Monteith P; Kallinen A; Lei W; Ganesan R; Grace J; McKenzie DR Med Eng Phys; 2017 Apr; 42():105-110. PubMed ID: 28159450 [TBL] [Abstract][Full Text] [Related]
9. Materials design considerations involved in the fabrication of implantable bionics by metallization of ceramic substrates. Patel S; Guenther T; Dodds CW; Kolke S; Privat KL; Matteucci PB; Suaning GJ Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():759-62. PubMed ID: 24109798 [TBL] [Abstract][Full Text] [Related]
10. A 232-channel retinal vision prosthesis with a miniaturized hermetic package. Ordonez JS; Schuettler M; Ortmanns M; Stieglitz T Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2796-9. PubMed ID: 23366506 [TBL] [Abstract][Full Text] [Related]
11. A polymer-metal two step sealing concept for hermetic neural implant packages. Kohler F; Kiele P; Ordonez JS; Stieglitz T; Schuettler M Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3981-4. PubMed ID: 25570864 [TBL] [Abstract][Full Text] [Related]
13. Capacitive Feedthroughs for Medical Implants. Grob S; Tass PA; Hauptmann C Front Neurosci; 2016; 10():404. PubMed ID: 27660602 [TBL] [Abstract][Full Text] [Related]
14. Microelectronic retinal prosthesis: III. a new method for fabrication of high-density hermetic feedthroughs. Suaning GJ; Lavoie P; Forrester J; Armitage T; Lovell NH Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1638-41. PubMed ID: 17946914 [TBL] [Abstract][Full Text] [Related]
15. Mechanical Characterization and Analysis of Different-Type Polyimide Feedthroughs Based on Tensile Test and FEM Simulation for an Implantable Package. Seok S; Park H; Kim YJ; Kim J Micromachines (Basel); 2022 Aug; 13(8):. PubMed ID: 36014217 [TBL] [Abstract][Full Text] [Related]
16. Pt-Al2O3 interfacial bonding in implantable hermetic feedthroughs: morphology and orientation. Lu H; Svehla MJ; Skalsky M; Kong C; Sorrell CC J Biomed Mater Res B Appl Biomater; 2012 Apr; 100(3):817-24. PubMed ID: 22213623 [TBL] [Abstract][Full Text] [Related]
17. Integrated electrode and high density feedthrough system for chip-scale implantable devices. Green RA; Guenther T; Jeschke C; Jaillon A; Yu JF; Dueck WF; Lim WW; Henderson WC; Vanhoestenberghe A; Lovell NH; Suaning GJ Biomaterials; 2013 Aug; 34(26):6109-18. PubMed ID: 23706781 [TBL] [Abstract][Full Text] [Related]
18. Interface Adhesion in Implantable Chip-in-Foil Systems. Bleck L; Steins H; von Metzen R Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2981-2984. PubMed ID: 30441024 [TBL] [Abstract][Full Text] [Related]
19. Miniaturized optogenetic neural implants: a review. Fan B; Li W Lab Chip; 2015 Oct; 15(19):3838-55. PubMed ID: 26308721 [TBL] [Abstract][Full Text] [Related]
20. Injectable Sensors Based on Passive Rectification of Volume-Conducted Currents. Malik S; Castellvi Q; Becerra-Fajardo L; Tudela-Pi M; Garcia-Moreno A; Baghini MS; Ivorra A IEEE Trans Biomed Circuits Syst; 2020 Aug; 14(4):867-878. PubMed ID: 32746346 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]