These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 30441023)

  • 21. A generic miniature multi-feature programmable wireless powering headstage ASIC for implantable biomedical systems.
    Kubendran R; Krishnan H; Manola B; John SW; Chappell WJ; Irazoqui PP
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5617-20. PubMed ID: 22255613
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Light-controlled biphasic current stimulator IC using CMOS image sensors for high-resolution retinal prosthesis and in vitro experimental results with rd1 mouse.
    Oh S; Ahn JH; Lee S; Ko H; Seo JM; Goo YS; Cho DI
    IEEE Trans Biomed Eng; 2015 Jan; 62(1):70-9. PubMed ID: 25020014
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A high-efficiency low-voltage CMOS rectifier for harvesting energy in implantable devices.
    Hashemi SS; Sawan M; Savaria Y
    IEEE Trans Biomed Circuits Syst; 2012 Aug; 6(4):326-35. PubMed ID: 23853177
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Low-Cost CMOS Programmable Temperature Switch.
    Li Y; Wu N
    Sensors (Basel); 2008 May; 8(5):3150-3164. PubMed ID: 27879871
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A 13.56 MHz CMOS Active Rectifier With Switched-Offset and Compensated Biasing for Biomedical Wireless Power Transfer Systems.
    Yan Lu ; Wing-Hung Ki
    IEEE Trans Biomed Circuits Syst; 2014 Jun; 8(3):334-44. PubMed ID: 23846494
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Low-power low-voltage current readout circuit for inductively powered implant system.
    Haider MR; Islam SK; Mostafa S; Mo Zhang ; Taeho Oh
    IEEE Trans Biomed Circuits Syst; 2010 Aug; 4(4):205-13. PubMed ID: 23853366
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A fully intraocular high-density self-calibrating epiretinal prosthesis.
    Monge M; Raj M; Nazari MH; Chang HC; Zhao Y; Weiland JD; Humayun MS; Tai YC; Emami A
    IEEE Trans Biomed Circuits Syst; 2013 Dec; 7(6):747-60. PubMed ID: 24473540
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A low power MICS band phase-locked loop for high resolution retinal prosthesis.
    Yang J; Skafidas E
    IEEE Trans Biomed Circuits Syst; 2013 Aug; 7(4):513-25. PubMed ID: 23893210
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A 0.7-V 17.4- μ W 3-lead wireless ECG SoC.
    Khayatzadeh M; Zhang X; Tan J; Liew WS; Lian Y
    IEEE Trans Biomed Circuits Syst; 2013 Oct; 7(5):583-92. PubMed ID: 24108477
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ultra-low power high temperature and radiation hard complementary metal-oxide-semiconductor (CMOS) silicon-on-insulator (SOI) voltage reference.
    Boufouss el H; Francis LA; Kilchytska V; Gérard P; Simon P; Flandre D
    Sensors (Basel); 2013 Dec; 13(12):17265-80. PubMed ID: 24351635
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Versatile Stimulation Back-End With Programmable Exponential Current Pulse Shapes for a Retinal Visual Prosthesis.
    Maghami MH; Sodagar AM; Sawan M
    IEEE Trans Neural Syst Rehabil Eng; 2016 Nov; 24(11):1243-1253. PubMed ID: 27046904
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Low-Power Highly Robust Resistance-to-Period Converter.
    Álvarez-Simón LC; Gómez-Ramírez E; Sanz-Pascual MT
    Sensors (Basel); 2018 Dec; 19(1):. PubMed ID: 30577468
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Design of power and data telemetry system utilizing Class-E amplifier for visual prosthesis].
    Liu B; Wu K; Wu X; Chai X
    Zhongguo Yi Liao Qi Xie Za Zhi; 2011 Jul; 35(4):239-42, 245. PubMed ID: 22097742
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A High-Voltage-Tolerant and Precise Charge-Balanced Neuro-Stimulator in Low Voltage CMOS Process.
    Luo Z; Ker MD
    IEEE Trans Biomed Circuits Syst; 2016 Dec; 10(6):1087-1099. PubMed ID: 27046880
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Low Power Energy-Efficient Precision CMOS Temperature Sensor
    Wei R; Bao X
    Micromachines (Basel); 2018 May; 9(6):. PubMed ID: 30424190
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An Ultra-Low-Power RFID/NFC Frontend IC Using 0.18 μm CMOS Technology for Passive Tag Applications.
    Bhattacharyya M; Gruenwald W; Jansen D; Reindl L; Aghassi-Hagmann J
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29735939
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Low-Voltage OTA-C Filter With an Area- and Power-Efficient OTA for Biosignal Sensor Applications.
    Lee SY; Wang CP; Chu YS
    IEEE Trans Biomed Circuits Syst; 2019 Feb; 13(1):56-67. PubMed ID: 30475730
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Regulated Temperature-Insensitive High-Voltage Charge Pump in Standard CMOS Process for Micromachined Gyroscopes.
    Li X; Li R; Ju C; Hou B; Wei Q; Zhou B; Chen Z; Zhang R
    Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31557820
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Power management design for lab-on-chip biosensors.
    Xiaojian Yu ; Moez K; I-Chyn Wey ; Jie Chen
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():2986-2989. PubMed ID: 28268940
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Load-Insensitive Hybrid LSK Back Telemetry System With Slope-Based Demodulation for Inductively Powered Biomedical Devices.
    Lee HS; Ahn J; Kang M; Lee HM
    IEEE Trans Biomed Circuits Syst; 2022 Aug; 16(4):651-663. PubMed ID: 35853074
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.