BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 30441048)

  • 1. Stimulation Effect of Inter-subject Variability in tDCS-Multi-scale Modeling Study.
    Im C; Seo H; Jun SC
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():3092-3095. PubMed ID: 30441048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A computational study on effect of a transcranial channel as a skull/brain interface in the conventional rectangular patch-type transcranial direct current stimulation.
    Hyeon Seo ; Hyoung-Ihl Kim ; Sung Chan Jun
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1946-1949. PubMed ID: 29060274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inter-subject Variability in Electric Fields of Motor Cortical tDCS.
    Laakso I; Tanaka S; Koyama S; De Santis V; Hirata A
    Brain Stimul; 2015; 8(5):906-13. PubMed ID: 26026283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relation between the electric field and activation of cortical neurons in transcranial electrical stimulation.
    Seo H; Jun SC
    Brain Stimul; 2019; 12(2):275-289. PubMed ID: 30449635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of gender-related differences in transcranial direct current stimulation: A Computational Study
    Thomas C; Ghodratitoostani I; Delbem ACB; Ali A; Datta A
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5196-5199. PubMed ID: 31947029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inter-individual and age-dependent variability in simulated electric fields induced by conventional transcranial electrical stimulation.
    Antonenko D; Grittner U; Saturnino G; Nierhaus T; Thielscher A; Flöel A
    Neuroimage; 2021 Jan; 224():117413. PubMed ID: 33011418
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards precise brain stimulation: Is electric field simulation related to neuromodulation?
    Antonenko D; Thielscher A; Saturnino GB; Aydin S; Ittermann B; Grittner U; Flöel A
    Brain Stimul; 2019; 12(5):1159-1168. PubMed ID: 30930209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of NIRS Probe Based on Computational Model to Find Out the Optimal Location for Non-Invasive Brain Stimulation.
    Sharma G; Roy Chowdhury S
    J Med Syst; 2018 Oct; 42(12):244. PubMed ID: 30374669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of electric field modeling pipelines for transcranial direct current stimulation.
    Bhalerao GV; Sreeraj VS; Bose A; Narayanaswamy JC; Venkatasubramanian G
    Neurophysiol Clin; 2021 Aug; 51(4):303-318. PubMed ID: 34023189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Effect of a Transcranial Channel as a Skull/Brain Interface in High-Definition Transcranial Direct Current Stimulation-A Computational Study.
    Seo H; Kim HI; Jun SC
    Sci Rep; 2017 Jan; 7():40612. PubMed ID: 28084429
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determinants of the electric field during transcranial direct current stimulation.
    Opitz A; Paulus W; Will S; Antunes A; Thielscher A
    Neuroimage; 2015 Apr; 109():140-50. PubMed ID: 25613437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inter-Individual Variation during Transcranial Direct Current Stimulation and Normalization of Dose Using MRI-Derived Computational Models.
    Datta A; Truong D; Minhas P; Parra LC; Bikson M
    Front Psychiatry; 2012; 3():91. PubMed ID: 23097644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systematic evaluation of the impact of stimulation intensity on neuroplastic after-effects induced by transcranial direct current stimulation.
    Jamil A; Batsikadze G; Kuo HI; Labruna L; Hasan A; Paulus W; Nitsche MA
    J Physiol; 2017 Feb; 595(4):1273-1288. PubMed ID: 27723104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of posture on electric fields of non-invasive brain stimulation.
    Mikkonen M; Laakso I
    Phys Med Biol; 2019 Mar; 64(6):065019. PubMed ID: 30708366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The impact of large structural brain changes in chronic stroke patients on the electric field caused by transcranial brain stimulation.
    Minjoli S; Saturnino GB; Blicher JU; Stagg CJ; Siebner HR; Antunes A; Thielscher A
    Neuroimage Clin; 2017; 15():106-117. PubMed ID: 28516033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of electrode displacement in high-definition transcranial direct current stimulation: A computational study.
    Hyeon Seo ; Donghyeon Kim ; Sung Chan Jun
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4618-4621. PubMed ID: 28269304
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Does participant's age impact on tDCS induced fields? Insights from computational simulations.
    McCann H; Beltrachini L
    Biomed Phys Eng Express; 2021 Jun; 7(4):. PubMed ID: 34038881
    [No Abstract]   [Full Text] [Related]  

  • 18. Multi-scale model of axonal and dendritic polarization by transcranial direct current stimulation in realistic head geometry.
    Aberra AS; Wang R; Grill WM; Peterchev AV
    Brain Stimul; 2023; 16(6):1776-1791. PubMed ID: 38056825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electric fields of motor and frontal tDCS in a standard brain space: A computer simulation study.
    Laakso I; Tanaka S; Mikkonen M; Koyama S; Sadato N; Hirata A
    Neuroimage; 2016 Aug; 137():140-151. PubMed ID: 27188218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Head models of healthy and depressed adults for simulating the electric fields of non-invasive electric brain stimulation.
    Boayue NM; Csifcsák G; Puonti O; Thielscher A; Mittner M
    F1000Res; 2018; 7():704. PubMed ID: 30505431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.