BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 30441104)

  • 1. Assessment of Inspiratory Muscle Activation using Surface Diaphragm Mechanomyography and Crural Diaphragm Electromyography.
    Lozano-Garcia M; Sarlabous L; Moxham J; Rafferty GF; Torres A; Jolley CJ; Jane R
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():3342-3345. PubMed ID: 30441104
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface mechanomyography and electromyography provide non-invasive indices of inspiratory muscle force and activation in healthy subjects.
    Lozano-García M; Sarlabous L; Moxham J; Rafferty GF; Torres A; Jané R; Jolley CJ
    Sci Rep; 2018 Nov; 8(1):16921. PubMed ID: 30446712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Noninvasive Assessment of Neuromechanical Coupling and Mechanical Efficiency of Parasternal Intercostal Muscle during Inspiratory Threshold Loading.
    Lozano-García M; Estrada-Petrocelli L; Torres A; Rafferty GF; Moxham J; Jolley CJ; Jané R
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33806463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of Correlation Between Surface Diaphragm Electromyography and Airflow Using Fixed Sample Entropy in Healthy Subjects.
    Gu X; Ren S; Shi Y; Li X; Guo Z; Zhao X; Mao Z; Cai M; Xie F
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():238-250. PubMed ID: 35041610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance Evaluation of Fixed Sample Entropy in Myographic Signals for Inspiratory Muscle Activity Estimation.
    Lozano-García M; Estrada L; Jané R
    Entropy (Basel); 2019 Feb; 21(2):. PubMed ID: 33266898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural Offset Time Evaluation in Surface Respiratory Signals during Controlled Respiration.
    Estrada L; Sarlabous L; Lozano-Garcia M; Jane R; Torres A
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2344-2347. PubMed ID: 31946370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improvement in Neural Respiratory Drive Estimation From Diaphragm Electromyographic Signals Using Fixed Sample Entropy.
    Estrada L; Torres A; Sarlabous L; Jané R
    IEEE J Biomed Health Inform; 2016 Mar; 20(2):476-85. PubMed ID: 25667362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EMG-Derived Respiration Signal Using the Fixed Sample Entropy during an Inspiratory Load Protocol.
    Estrada L; Torres A; Sarlabous L; Jané R
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1703-6. PubMed ID: 26736605
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Velocity of shortening of inspiratory muscles and inspiratory flow.
    Fitting JW; Easton PA; Grassino AE
    J Appl Physiol (1985); 1986 Feb; 60(2):670-7. PubMed ID: 3081483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence towards improved estimation of respiratory muscle effort from diaphragm mechanomyographic signals with cardiac vibration interference using sample entropy with fixed tolerance values.
    Sarlabous L; Torres A; Fiz JA; Jané R
    PLoS One; 2014; 9(2):e88902. PubMed ID: 24586436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acute effects of incremental inspiratory loads on compartmental chest wall volume and predominant activity frequency of inspiratory muscle.
    Da Gama AE; de Andrade Carvalho L; Feitosa LA; do Nascimento Junior JF; da Silva MG; Amorim CF; Aliverti A; Lambertz D; Rodrigues MA; de Andrade AD
    J Electromyogr Kinesiol; 2013 Dec; 23(6):1269-77. PubMed ID: 24035013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of progressive hypoxia on parasternal, costal, and crural diaphragm activation.
    Darian GB; DiMarco AF; Kelsen SG; Supinski GS; Gottfried SB
    J Appl Physiol (1985); 1989 Jun; 66(6):2579-84. PubMed ID: 2745319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlation of surface respiratory electromyography with esophageal diaphragm electromyography.
    Lin L; Guan L; Wu W; Chen R
    Respir Physiol Neurobiol; 2019 Jan; 259():45-52. PubMed ID: 30041019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Onset and Offset Estimation of the Neural Inspiratory Time in Surface Diaphragm Electromyography: A Pilot Study in Healthy Subjects.
    Estrada L; Torres A; Sarlabous L; Jane R
    IEEE J Biomed Health Inform; 2018 Jan; 22(1):67-76. PubMed ID: 28237936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationship Between Electromyogram Spectrum Parameters and the Tension-Time Index During Incremental Exercise in Trained Subjects.
    Chlif M; Keochkerian D; Temfemo A; Choquet D; Ahmaidi S
    J Sports Sci Med; 2018 Sep; 17(3):509-514. PubMed ID: 30116125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crural diaphragm activation during dynamic contractions at various inspiratory flow rates.
    Beck J; Sinderby C; Lindström L; Grassino A
    J Appl Physiol (1985); 1998 Aug; 85(2):451-8. PubMed ID: 9688719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficiency of the normal human diaphragm with hyperinflation.
    Finucane KE; Panizza JA; Singh B
    J Appl Physiol (1985); 2005 Oct; 99(4):1402-11. PubMed ID: 15961606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of inspiratory resistive loading on costal and crural diaphragm electromyograms in piglets.
    Watchko JF; Mayock DE; Standaert TA; Woodrum DE
    Pediatr Res; 1987 Jan; 21(1):25-8. PubMed ID: 3797130
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural Respiratory Drive Estimation in Respiratory sEMG with Cardiac Arrhythmias.
    Estrada-Petrocelli L; Jane R; Torres A
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():2748-2751. PubMed ID: 33018575
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diaphragm Recruitment Increases during a Bout of Targeted Inspiratory Muscle Training.
    Ramsook AH; Koo R; Molgat-Seon Y; Dominelli PB; Syed N; Ryerson CJ; Sheel AW; Guenette JA
    Med Sci Sports Exerc; 2016 Jun; 48(6):1179-86. PubMed ID: 26795460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.