These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 30441132)

  • 1. A New Mathematical Force Model that Predicts the Force-pulse Amplitude Relationship of Human Skeletal Muscle.
    Hmed AB; Bakir T; Sakly A; Binczak S
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():3485-3488. PubMed ID: 30441132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An approach to a muscle force model with force-pulse amplitude relationship of human quadriceps muscles.
    Ben Hmed A; Bakir T; Garnier YM; Sakly A; Lepers R; Binczak S
    Comput Biol Med; 2018 Oct; 101():218-228. PubMed ID: 30199798
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of stimulation frequency and fatigue on the force-intensity relationship for human skeletal muscle.
    Chou LW; Binder-Macleod SA
    Clin Neurophysiol; 2007 Jun; 118(6):1387-96. PubMed ID: 17466581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mathematical model that predicts isometric muscle forces for individuals with spinal cord injuries.
    Ding J; Lee SC; Johnston TE; Wexler AS; Scott WB; Binder-Macleod SA
    Muscle Nerve; 2005 Jun; 31(6):702-12. PubMed ID: 15742371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mathematical model that predicts the force-intensity and force-frequency relationships after spinal cord injuries.
    Ding J; Chou LW; Kesar TM; Lee SC; Johnston TE; Wexler AS; Binder-Macleod SA
    Muscle Nerve; 2007 Aug; 36(2):214-22. PubMed ID: 17503498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a mathematical model for predicting electrically elicited quadriceps femoris muscle forces during isovelocity knee joint motion.
    Perumal R; Wexler AS; Binder-Macleod SA
    J Neuroeng Rehabil; 2008 Dec; 5():33. PubMed ID: 19077188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A mathematical model that predicts the force-frequency relationship of human skeletal muscle.
    Ding J; Wexler AS; Binder-Macleod SA
    Muscle Nerve; 2002 Oct; 26(4):477-85. PubMed ID: 12362412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting optimal electrical stimulation for repetitive human muscle activation.
    Chou LW; Ding J; Wexler AS; Binder-Macleod SA
    J Electromyogr Kinesiol; 2005 Jun; 15(3):300-9. PubMed ID: 15763677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of stimulation frequency versus pulse duration modulation on muscle fatigue.
    Kesar T; Chou LW; Binder-Macleod SA
    J Electromyogr Kinesiol; 2008 Aug; 18(4):662-71. PubMed ID: 17317219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling the length dependence of isometric force in human quadriceps muscles.
    Perumal R; Wexler AS; Ding J; Binder-Macleod SA
    J Biomech; 2002 Jul; 35(7):919-30. PubMed ID: 12052394
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic optimization of stimulation frequency to reduce isometric muscle fatigue using a modified Hill-Huxley model.
    Doll BD; Kirsch NA; Bao X; Dicianno BE; Sharma N
    Muscle Nerve; 2018 Apr; 57(4):634-641. PubMed ID: 28833237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of tendon vibration during wide-pulse neuromuscular electrical stimulation (NMES) on muscle force production in people with spinal cord injury (SCI).
    Bochkezanian V; Newton RU; Trajano GS; Vieira A; Pulverenti TS; Blazevich AJ
    BMC Neurol; 2018 Feb; 18(1):17. PubMed ID: 29433467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-step, predictive, isometric force model tested on data from human and rat muscles.
    Ding J; Binder-Macleod SA; Wexler AS
    J Appl Physiol (1985); 1998 Dec; 85(6):2176-89. PubMed ID: 9843541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting muscle forces of individuals with hemiparesis following stroke.
    Kesar TM; Ding J; Wexler AS; Perumal R; Maladen R; Binder-Macleod SA
    J Neuroeng Rehabil; 2008 Feb; 5():7. PubMed ID: 18304360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of frequency and pulse duration on human muscle fatigue during repetitive electrical stimulation.
    Kesar T; Binder-Macleod S
    Exp Physiol; 2006 Nov; 91(6):967-76. PubMed ID: 16873456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reducing muscle fatigue due to functional electrical stimulation using random modulation of stimulation parameters.
    Thrasher A; Graham GM; Popovic MR
    Artif Organs; 2005 Jun; 29(6):453-8. PubMed ID: 15926981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A predictive fatigue model--I: Predicting the effect of stimulation frequency and pattern on fatigue.
    Ding J; Wexler AS; Binder-Macleod SA
    IEEE Trans Neural Syst Rehabil Eng; 2002 Mar; 10(1):48-58. PubMed ID: 12173739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Time-Varying Nature of Electromechanical Delay and Muscle Control Effectiveness in Response to Stimulation-Induced Fatigue.
    Downey RJ; Merad M; Gonzalez EJ; Dixon WE
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1397-1408. PubMed ID: 27845664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using customized rate-coding and recruitment strategies to maintain forces during repetitive activation of human muscles.
    Chou LW; Kesar TM; Binder-Macleod SA
    Phys Ther; 2008 Mar; 88(3):363-75. PubMed ID: 18174446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A predictive model of fatigue in human skeletal muscles.
    Ding J; Wexler AS; Binder-Macleod SA
    J Appl Physiol (1985); 2000 Oct; 89(4):1322-32. PubMed ID: 11007565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.