These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 30441154)

  • 1. A System for Accurate Tracking and Video Recordings of Rodent Eye Movements using Convolutional Neural Networks for Biomedical Image Segmentation.
    Puri I; Cox DD
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():3590-3593. PubMed ID: 30441154
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A self-calibrating, camera-based eye tracker for the recording of rodent eye movements.
    Zoccolan D; Graham BJ; Cox DD
    Front Neurosci; 2010; 4():193. PubMed ID: 21152259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybrid Eye-Tracking on a Smartphone with CNN Feature Extraction and an Infrared 3D Model.
    Brousseau B; Rose J; Eizenman M
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31963823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DeepVOG: Open-source pupil segmentation and gaze estimation in neuroscience using deep learning.
    Yiu YH; Aboulatta M; Raiser T; Ophey L; Flanagin VL; Zu Eulenburg P; Ahmadi SA
    J Neurosci Methods; 2019 Aug; 324():108307. PubMed ID: 31176683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Image processing for improved eye-tracking accuracy.
    Mulligan JB
    Behav Res Methods Instrum Comput; 1997 Feb; 29(1):54-65. PubMed ID: 11539868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strabismus Recognition Using Eye-Tracking Data and Convolutional Neural Networks.
    Chen Z; Fu H; Lo WL; Chi Z
    J Healthc Eng; 2018; 2018():7692198. PubMed ID: 29854365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gaze estimation interpolation methods based on binocular data.
    Sesma-Sanchez L; Villanueva A; Cabeza R
    IEEE Trans Biomed Eng; 2012 Aug; 59(8):2235-2243. PubMed ID: 22665501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EllSeg: An Ellipse Segmentation Framework for Robust Gaze Tracking.
    Kothari RS; Chaudhary AK; Bailey RJ; Pelz JB; Diaz GJ
    IEEE Trans Vis Comput Graph; 2021 May; 27(5):2757-2767. PubMed ID: 33780339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Eye-Tracking System based on Inner Corner-Pupil Center Vector and Deep Neural Network.
    Su MC; U TM; Hsieh YZ; Yeh ZF; Lee SF; Lin SS
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31861512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical eye tracking system for real-time noninvasive tumor localization in external beam radiotherapy.
    Via R; Fassi A; Fattori G; Fontana G; Pella A; Tagaste B; Riboldi M; Ciocca M; Orecchia R; Baroni G
    Med Phys; 2015 May; 42(5):2194-202. PubMed ID: 25979013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving the accuracy and reliability of remote system-calibration-free eye-gaze tracking.
    Hennessey CA; Lawrence PD
    IEEE Trans Biomed Eng; 2009 Jul; 56(7):1891-900. PubMed ID: 19272975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The amplitude of small eye movements can be accurately estimated with video-based eye trackers.
    Nyström M; Niehorster DC; Andersson R; Hessels RS; Hooge ITC
    Behav Res Methods; 2023 Feb; 55(2):657-669. PubMed ID: 35419703
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robust eye tracking based on multiple corneal reflections for clinical applications.
    Mestre C; Gautier J; Pujol J
    J Biomed Opt; 2018 Mar; 23(3):1-9. PubMed ID: 29500875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A low cost human computer interface based on eye tracking.
    Hiley JB; Redekopp AH; Fazel-Rezai R
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():3226-9. PubMed ID: 17946167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using Deep Learning to Increase Eye-Tracking Robustness, Accuracy, and Precision in Virtual Reality.
    Barkevich K; Bailey R; Diaz GJ
    Proc ACM Comput Graph Interact Tech; 2024 May; 7(2):. PubMed ID: 39119010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Segmenting and tracking cell instances with cosine embeddings and recurrent hourglass networks.
    Payer C; Štern D; Feiner M; Bischof H; Urschler M
    Med Image Anal; 2019 Oct; 57():106-119. PubMed ID: 31299493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Do pupil-based binocular video eye trackers reliably measure vergence?
    Hooge ITC; Hessels RS; Nyström M
    Vision Res; 2019 Mar; 156():1-9. PubMed ID: 30641092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From lab-based studies to eye-tracking in virtual and real worlds: conceptual and methodological problems and solutions. Symposium 4 at the 20th European Conference on Eye Movement Research (ECEM) in Alicante, 20.8.2019.
    Hooge ITC; Hessels RS; Niehorster DC; Diaz GJ; Duchowski AT; Pelz JB
    J Eye Mov Res; 2019 Nov; 12(7):. PubMed ID: 33828764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gaze-angle dependency of pupil-size measurements in head-mounted eye tracking.
    Petersch B; Dierkes K
    Behav Res Methods; 2022 Apr; 54(2):763-779. PubMed ID: 34347276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Precise localization of corneal reflections in eye images using deep learning trained on synthetic data.
    Byrne SA; Nyström M; Maquiling V; Kasneci E; Niehorster DC
    Behav Res Methods; 2024 Apr; 56(4):3226-3241. PubMed ID: 38114880
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.