These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 30441187)

  • 1. Data Driven Spatial Filtering Can Enhance Abstract Myoelectric Control in Amputees.
    Dyson M; Nazarpour K
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():3770-3773. PubMed ID: 30441187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time simultaneous myoelectric control by transradial amputees using linear and probability-weighted regression.
    Smith LH; Kuiken TA; Hargrove LJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1119-23. PubMed ID: 26736462
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of real-time machine learning to myoelectric prosthesis control: A case series in adaptive switching.
    Edwards AL; Dawson MR; Hebert JS; Sherstan C; Sutton RS; Chan KM; Pilarski PM
    Prosthet Orthot Int; 2016 Oct; 40(5):573-81. PubMed ID: 26423106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Locomotor Adaptation by Transtibial Amputees Walking With an Experimental Powered Prosthesis Under Continuous Myoelectric Control.
    Huang S; Wensman JP; Ferris DP
    IEEE Trans Neural Syst Rehabil Eng; 2016 May; 24(5):573-81. PubMed ID: 26057851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clinical application study of externally powered upper-limb prosthetics systems: the VA elbow, the VA hand, and the VA/NU myoelectric hand systems.
    Lewis EA; Sheredos CR; Sowell TT; Houston VL
    Bull Prosthet Res; 1975; (10-24):51-136. PubMed ID: 776301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Voluntary Control of Residual Antagonistic Muscles in Transtibial Amputees: Reciprocal Activation, Coactivation, and Implications for Direct Neural Control of Powered Lower Limb Prostheses.
    Huang S; Huang H
    IEEE Trans Neural Syst Rehabil Eng; 2019 Jan; 27(1):85-95. PubMed ID: 30530332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The development of a myoelectric training tool for above-elbow amputees.
    Dawson MR; Fahimi F; Carey JP
    Open Biomed Eng J; 2012; 6():5-15. PubMed ID: 22383905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeted muscle reinnervation to improve electromyography signals for advanced myoelectric prosthetic limbs: a series of seven patients.
    Myers H; Lu D; Gray SJ; Bruscino-Raiola F
    ANZ J Surg; 2020 Apr; 90(4):591-596. PubMed ID: 31989741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protocol for site selection and movement assessment for the myoelectric control of a multi-functional upper-limb prosthesis.
    Al-Timemy AH; Escudero J; Bugmann G; Outram N
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5817-20. PubMed ID: 24111061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensor fusion and computer vision for context-aware control of a multi degree-of-freedom prosthesis.
    Markovic M; Dosen S; Popovic D; Graimann B; Farina D
    J Neural Eng; 2015 Dec; 12(6):066022. PubMed ID: 26529274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving bimanual interaction with a prosthesis using semi-autonomous control.
    Volkmar R; Dosen S; Gonzalez-Vargas J; Baum M; Markovic M
    J Neuroeng Rehabil; 2019 Nov; 16(1):140. PubMed ID: 31727087
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of EMG pattern recognition for upper limb prosthesis control: a case study in comparison with direct myoelectric control.
    Resnik L; Huang HH; Winslow A; Crouch DL; Zhang F; Wolk N
    J Neuroeng Rehabil; 2018 Mar; 15(1):23. PubMed ID: 29544501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Upper Limb Prosthesis Control for High-Level Amputees via Myoelectric Recognition of Leg Gestures.
    Lyons KR; Joshi SS; Joshi SS; Lyons KR
    IEEE Trans Neural Syst Rehabil Eng; 2018 May; 26(5):1056-1066. PubMed ID: 29752241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Novel Muscle Transfer for Independent Digital Control of a Myoelectric Prosthesis: The Starfish Procedure.
    Gaston RG; Bracey JW; Tait MA; Loeffler BJ
    J Hand Surg Am; 2019 Feb; 44(2):163.e1-163.e5. PubMed ID: 29908928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of vibrotactile and joint-torque feedback in a myoelectric upper-limb prosthesis.
    Thomas N; Ung G; McGarvey C; Brown JD
    J Neuroeng Rehabil; 2019 Jun; 16(1):70. PubMed ID: 31186005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preliminary investigation of residual limb plantarflexion and dorsiflexion muscle activity during treadmill walking for trans-tibial amputees.
    Silver-Thorn B; Current T; Kuhse B
    Prosthet Orthot Int; 2012 Dec; 36(4):435-42. PubMed ID: 22581661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Skill assessment in upper limb myoelectric prosthesis users: Validation of a clinically feasible method for characterising upper limb temporal and amplitude variability during the performance of functional tasks.
    Thies SB; Kenney LP; Sobuh M; Galpin A; Kyberd P; Stine R; Major MJ
    Med Eng Phys; 2017 Sep; 47():137-143. PubMed ID: 28684214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HD-sEMG Signal Denoising Method for Improved Classification Performance in Transhumeral Amputees Pros thesis Control.
    Asogbon MG; Williams Samuel O; Ejay E; Jarrah YA; Chen S; Li G
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():857-861. PubMed ID: 34891425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An exploration of grip force regulation with a low-impedance myoelectric prosthesis featuring referred haptic feedback.
    Brown JD; Paek A; Syed M; O'Malley MK; Shewokis PA; Contreras-Vidal JL; Davis AJ; Gillespie RB
    J Neuroeng Rehabil; 2015 Nov; 12():104. PubMed ID: 26602538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding Limb Position and External Load Effects on Real-Time Pattern Recognition Control in Amputees.
    Teh Y; Hargrove LJ
    IEEE Trans Neural Syst Rehabil Eng; 2020 Jul; 28(7):1605-1613. PubMed ID: 32396094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.