These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 30441191)

  • 1. A Pilot Study on Using Forcemyography to Record Upper-limb Movements for Human-machine Interactive Control.
    Zhang N; Li X; Samuel OW; Huang PG; Fang P; Li G
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():3788-3791. PubMed ID: 30441191
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FMG-based body motion registration using piezoelectret sensors.
    Xiangxin Li ; Qifang Zhuo ; Xu Zhang ; Samuel OW; Zeyang Xia ; Xiaoqing Zhang ; Peng Fang ; Guanglin Li
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4626-4629. PubMed ID: 28269306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A preliminary investigation on the utility of temporal features of Force Myography in the two-class problem of grasp vs. no-grasp in the presence of upper-extremity movements.
    Sadarangani GP; Menon C
    Biomed Eng Online; 2017 May; 16(1):59. PubMed ID: 28511661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparative study of motion detection with FMG and sEMG methods for assistive applications.
    Islam MRU; Waris A; Kamavuako EN; Bai S
    J Rehabil Assist Technol Eng; 2020; 7():2055668320938588. PubMed ID: 33240523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of Low-Density Force Myography Armband for Classification of Upper Limb Gestures.
    Rehman MU; Shah K; Haq IU; Iqbal S; Ismail MA; Selimefendigil F
    Sensors (Basel); 2023 Mar; 23(5):. PubMed ID: 36904919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Review of Force Myography Research and Development.
    Xiao ZG; Menon C
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31635167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-density force myography: A possible alternative for upper-limb prosthetic control.
    Radmand A; Scheme E; Englehart K
    J Rehabil Res Dev; 2016; 53(4):443-56. PubMed ID: 27532260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of Muscle Synergies in Real-Time Classification of Upper Limb Motions using Extreme Learning Machines.
    Antuvan CW; Bisio F; Marini F; Yen SC; Cambria E; Masia L
    J Neuroeng Rehabil; 2016 Aug; 13(1):76. PubMed ID: 27527511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimating Exerted Hand Force via Force Myography to Interact with a Biaxial Stage in Real-Time by Learning Human Intentions: A Preliminary Investigation.
    Zakia U; Menon C
    Sensors (Basel); 2020 Apr; 20(7):. PubMed ID: 32276456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Force Myography for Monitoring Grasping in Individuals with Stroke with Mild to Moderate Upper-Extremity Impairments: A Preliminary Investigation in a Controlled Environment.
    Sadarangani GP; Jiang X; Simpson LA; Eng JJ; Menon C
    Front Bioeng Biotechnol; 2017; 5():42. PubMed ID: 28798912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A proportional control scheme for high density force myography.
    Belyea AT; Englehart KB; Scheme EJ
    J Neural Eng; 2018 Aug; 15(4):046029. PubMed ID: 29845972
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A preliminary study of classification of upper limb motions and forces based on mechanomyography.
    Zhang Y; Xia C
    Med Eng Phys; 2020 Jul; 81():97-104. PubMed ID: 32507673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Investigation on the Sampling Frequency of the Upper-Limb Force Myographic Signals.
    Xiao ZG; Menon C
    Sensors (Basel); 2019 May; 19(11):. PubMed ID: 31141926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fusion Learning for sEMG Recognition of Multiple Upper-Limb Rehabilitation Movements.
    Zhong T; Li D; Wang J; Xu J; An Z; Zhu Y
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Motor imagery classification of upper limb movements based on spectral domain features of EEG patterns.
    Samuel OW; Xiangxin Li ; Yanjuan Geng ; Pang Feng ; Shixiong Chen ; Guanglin Li
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():2976-2979. PubMed ID: 29060523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards the development of a wearable feedback system for monitoring the activities of the upper-extremities.
    Xiao ZG; Menon C
    J Neuroeng Rehabil; 2014 Jan; 11():2. PubMed ID: 24397984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A standalone computing system to classify human foot movements using machine learning techniques for ankle-foot prosthesis control.
    Negi S; Sharma N
    Comput Methods Biomech Biomed Engin; 2022 Sep; 25(12):1370-1380. PubMed ID: 34866501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Ultra-Sensitive Modular Hybrid EMG-FMG Sensor with Floating Electrodes.
    Ke A; Huang J; Chen L; Gao Z; He J
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32846982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feature Selection and Non-Linear Classifiers: Effects on Simultaneous Motion Recognition in Upper Limb.
    Camargo J; Young A
    IEEE Trans Neural Syst Rehabil Eng; 2019 Apr; 27(4):743-750. PubMed ID: 30869626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous decoding of movement intention of upper limb self-initiated analytic movements from pre-movement EEG correlates.
    López-Larraz E; Montesano L; Gil-Agudo Á; Minguez J
    J Neuroeng Rehabil; 2014 Nov; 11():153. PubMed ID: 25398273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.