These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 30441289)

  • 1. An Automatic Cycling Performance Classifier System Based on the Crank Arm Force Measurement Data.
    Pigatto AV; Santos RRD; Balbinot A
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():4237-4240. PubMed ID: 30441289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new crank arm based load cell, with built-in conditioning circuit and strain gages, to measure the components of the force applied by a cyclist.
    Pigatto AV; Moura KO; Favieiro GW; Balbinot A
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1983-1986. PubMed ID: 28268718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationship between pedal force asymmetry and performance in cycling time trial.
    Bini RR; Hume PA
    J Sports Med Phys Fitness; 2015 Sep; 55(9):892-8. PubMed ID: 26470634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and Validation of a Device Attached to a Conventional Bicycle to Measure the Three-Dimensional Forces Applied to a Pedal.
    Martín-Sosa E; Chaves V; Alvarado I; Mayo J; Ojeda J
    Sensors (Basel); 2021 Jul; 21(13):. PubMed ID: 34283156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new crank arm-based load cell for the 3D analysis of the force applied by a cyclist.
    Balbinot A; Milani C; Nascimento Jda S
    Sensors (Basel); 2014 Dec; 14(12):22921-39. PubMed ID: 25479325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A pedal dynamometer for off-road bicycling.
    Rowe T; Hull ML; Wang EL
    J Biomech Eng; 1998 Feb; 120(1):160-4. PubMed ID: 9675695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of bilateral asymmetry in cycling using a commercial instrumented crank system and instrumented pedals.
    Bini RR; Hume PA
    Int J Sports Physiol Perform; 2014 Sep; 9(5):876-81. PubMed ID: 24509507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multivariable optimization of cycling biomechanics.
    Gonzalez H; Hull ML
    J Biomech; 1989; 22(11-12):1151-61. PubMed ID: 2625415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of pedaling rate on bilateral asymmetry in cycling.
    Smak W; Neptune RR; Hull ML
    J Biomech; 1999 Sep; 32(9):899-906. PubMed ID: 10460126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and evaluation of a new bicycle instrument for measurements of pedal forces and power output in cycling.
    Stapelfeldt B; Mornieux G; Oberheim R; Belli A; Gollhofer A
    Int J Sports Med; 2007 Apr; 28(4):326-32. PubMed ID: 17024643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The co-contraction index of the upper limb for young and old adult cyclists.
    Kiewiet H; Bulsink VE; Beugels F; Koopman HFJM
    Accid Anal Prev; 2017 Aug; 105():95-101. PubMed ID: 27174374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of cadence and power output on the biomechanics of force application during steady-rate cycling in competitive and recreational cyclists.
    Sanderson DJ
    J Sports Sci; 1991; 9(2):191-203. PubMed ID: 1895355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complete factorial design experiment for 3D load cell instrumented crank validation.
    Omar VC; Rafael D; Vinicius C; Alexandre B
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():3655-8. PubMed ID: 26737085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strategies for improving the pedaling technique.
    Duc S; Bertucci W; Grappe F
    J Sports Med Phys Fitness; 2019 Dec; 59(12):2030-2039. PubMed ID: 31933344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The impact of arm-crank position on the drag of a paralympic hand-cyclist.
    Mannion P; Toparlar Y; Clifford E; Hajdukiewicz M; Andrianne T; Blocken B
    Comput Methods Biomech Biomed Engin; 2019 Mar; 22(4):386-395. PubMed ID: 30773039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crank inertial load affects freely chosen pedal rate during cycling.
    Hansen EA; Jørgensen LV; Jensen K; Fregly BJ; Sjøgaard G
    J Biomech; 2002 Feb; 35(2):277-85. PubMed ID: 11784546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of crank length on joint-specific power during maximal cycling.
    Barratt PR; Korff T; Elmer SJ; Martin JC
    Med Sci Sports Exerc; 2011 Sep; 43(9):1689-97. PubMed ID: 21311357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determinants of maximal cycling power: crank length, pedaling rate and pedal speed.
    Martin JC; Spirduso WW
    Eur J Appl Physiol; 2001 May; 84(5):413-8. PubMed ID: 11417428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effectiveness of force production in persons with unilateral transtibial amputation during cycling.
    Childers WL; Gregor RJ
    Prosthet Orthot Int; 2011 Dec; 35(4):373-8. PubMed ID: 21998095
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cycling performance and mechanical variables using a new prototype chainring.
    Belen L; Habrard M; Micallef JP; Perrey S; Le Gallais D
    Eur J Appl Physiol; 2007 Dec; 101(6):721-6. PubMed ID: 17768635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.