BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 30441317)

  • 1. Estimating Localized Bio-impedance with Measures from Multiple Redundant Electrode Configurations.
    Fu B; Freeborn TJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():4351-4354. PubMed ID: 30441317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impedance spectroscopy of changes in skin-electrode impedance induced by motion.
    Cömert A; Hyttinen J
    Biomed Eng Online; 2014 Nov; 13():149. PubMed ID: 25404355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison study of electrodes for neonate electrical impedance tomography.
    Rahal M; Khor JM; Demosthenous A; Tizzard A; Bayford R
    Physiol Meas; 2009 Jun; 30(6):S73-84. PubMed ID: 19491443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The sensitivity of focused electrical impedance measurements.
    Islam N; Siddique-e Rabbani K; Wilson A
    Physiol Meas; 2010 Aug; 31(8):S97-109. PubMed ID: 20647612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overcoming the Impedance Range Limitations of Portable Bioelectrical Impedance Spectroscopy Clinical Devices.
    Montalibet A; Massot B; Gehin C; McAdams E
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards Estimating Arterial Diameter Using Bioimpedance Spectroscopy: A Computational Simulation and Tissue Phantom Analysis.
    Yu Y; Anand G; Lowe A; Zhang H; Kalra A
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Effect of Subcutaneous Fat on Electrical Impedance Myography: Electrode Configuration and Multi-Frequency Analyses.
    Li L; Li X; Hu H; Shin H; Zhou P
    PLoS One; 2016; 11(5):e0156154. PubMed ID: 27227876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of Bio-Impedance Electrode Topologies for Specific Depth Sensing in Skin Layer.
    Park M; Eom K; Jung MH; Park YS; Lee JY; Nam SH
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3961-3964. PubMed ID: 33018867
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Portable bioimpedance monitor evaluation for continuous impedance measurements. Towards wearable plethysmography applications.
    Ferreira J; Seoane F; Lindecrantz K
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():559-62. PubMed ID: 24109748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Addition of internal electrodes is beneficial for focused bioimpedance measurements in the lung.
    Orschulik J; Hochhausen N; Czaplik M; Teichmann D; Leonhardt S; Walter M
    Physiol Meas; 2018 Mar; 39(3):035009. PubMed ID: 29406309
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of skin blood flow and temperature on skin--electrode impedance and offset potential: measurements at low alternating current density.
    Smith DC
    J Med Eng Technol; 1992; 16(3):112-6. PubMed ID: 1404312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Localized Bioimpedance Measurements with the MAX3000x Integrated Circuit: Characterization and Demonstration.
    Critcher S; Freeborn TJ
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33923037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimum electrode configuration for detection of leg movement using bio-impedance.
    Song CG; Kim SC; Nam KC; Kim DW
    Physiol Meas; 2005 Apr; 26(2):S59-68. PubMed ID: 15798247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic impedance cytometry for single-cell sensing: Review on electrode configurations.
    Zhu S; Zhang X; Zhou Z; Han Y; Xiang N; Ni Z
    Talanta; 2021 Oct; 233():122571. PubMed ID: 34215067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimizing electrode configuration for electrical impedance measurements of muscle via the finite element method.
    Jafarpoor M; Li J; White JK; Rutkove SB
    IEEE Trans Biomed Eng; 2013 May; 60(5):1446-52. PubMed ID: 23314763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased Conductivity and Reduced Settling Time of Carbon-Based Electrodes By Addition of Sea Salt for Wearable Application.
    Noh Y; Ye X; Murphy L; Eaton-Robb C; Dimitrov T; Choi WJ; Chon KH
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1291-1294. PubMed ID: 30440627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Standard versus modified bio-electrical impedance analysis on reactance measurements.
    Turner AA; Bouffard M; Lukaski HC
    Int J Circumpolar Health; 1998; 57 Suppl 1():730-7. PubMed ID: 10093379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alternate Electrode Positions for the Measurement of Hand Volumes Using Bioimpedance Spectroscopy.
    Edwick DO; Hince DA; Rawlins JM; Wood FM; Edgar DW
    Lymphat Res Biol; 2020 Dec; 18(6):560-571. PubMed ID: 32456535
    [No Abstract]   [Full Text] [Related]  

  • 19. Different displacement of bioimpedance vector due to Ag/AgCl electrode effect.
    Nescolarde L; Lukaski H; De Lorenzo A; de-Mateo-Silleras B; Redondo-Del-Río MP; Camina-Martín MA
    Eur J Clin Nutr; 2016 Dec; 70(12):1401-1407. PubMed ID: 27380885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The impedance of a spherical monopolar electrode.
    Ragheb T; Riegle S; Geddes LA; Amin V
    Ann Biomed Eng; 1992; 20(6):617-27. PubMed ID: 1449230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.