These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 30441344)
1. Direct Measurement of Mass Transport in Actuation of Conducting Polymers Nanotubes Eslamian M; Antensteiner M; Abidian MR Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():4472-4475. PubMed ID: 30441344 [TBL] [Abstract][Full Text] [Related]
2. Conducting Polymer Microtubes for Bioactuators. Eslamian M; Mirab F; Majd S; Abidian MR Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3693-3696. PubMed ID: 31946677 [TBL] [Abstract][Full Text] [Related]
3. Impact of the electrochemical porosity and chemical composition on the lithium ion exchange behavior of polypyrroles (ClO4-, TOS-, TFSI-) prepared electrochemically in propylene carbonate. comparative EQCM, EIS and CV studies. Dziewoński PM; Grzeszczuk M J Phys Chem B; 2010 Jun; 114(21):7158-71. PubMed ID: 20459080 [TBL] [Abstract][Full Text] [Related]
4. Conducting-polymer nanotubes improve electrical properties, mechanical adhesion, neural attachment, and neurite outgrowth of neural electrodes. Abidian MR; Corey JM; Kipke DR; Martin DC Small; 2010 Feb; 6(3):421-9. PubMed ID: 20077424 [TBL] [Abstract][Full Text] [Related]
5. Experimental and theoretical characterization of implantable neural microelectrodes modified with conducting polymer nanotubes. Abidian MR; Martin DC Biomaterials; 2008 Mar; 29(9):1273-83. PubMed ID: 18093644 [TBL] [Abstract][Full Text] [Related]
6. Polypyrrole-poly(3,4-ethylenedioxythiophene)-Ag (PPy-PEDOT-Ag) nanocomposite films for label-free electrochemical DNA sensing. Radhakrishnan S; Sumathi C; Umar A; Jae Kim S; Wilson J; Dharuman V Biosens Bioelectron; 2013 Sep; 47():133-40. PubMed ID: 23578969 [TBL] [Abstract][Full Text] [Related]
7. Fabrication and characterization of conductive poly (3,4-ethylenedioxythiophene) doped with hyaluronic acid/poly (l-lactic acid) composite film for biomedical application. Wang S; Guan S; Wang J; Liu H; Liu T; Ma X; Cui Z J Biosci Bioeng; 2017 Jan; 123(1):116-125. PubMed ID: 27498308 [TBL] [Abstract][Full Text] [Related]
8. Interfacing conjugated polymers with magnetic nanowires. Callegari V; Demoustier-Champagne S ACS Appl Mater Interfaces; 2010 May; 2(5):1369-76. PubMed ID: 20405868 [TBL] [Abstract][Full Text] [Related]
9. Poly(3,4-ethylenedioxythiophene)-Based Nanofiber Mats as an Organic Bioelectronic Platform for Programming Multiple Capture/Release Cycles of Circulating Tumor Cells. Yu CC; Ho BC; Juang RS; Hsiao YS; Naidu RVR; Kuo CW; You YW; Shyue JJ; Fang JT; Chen P ACS Appl Mater Interfaces; 2017 Sep; 9(36):30329-30342. PubMed ID: 28825302 [TBL] [Abstract][Full Text] [Related]
10. Multiwall carbon nanotube and poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) composite films for transistor and inverter devices. Yun DJ; Hong K; Kim Sh; Yun WM; Jang JY; Kwon WS; Park CE; Rhee SW ACS Appl Mater Interfaces; 2011 Jan; 3(1):43-9. PubMed ID: 21204559 [TBL] [Abstract][Full Text] [Related]
11. Construction of hierarchical polypyrrole coated copper-catecholate grown on poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) fibers for high-performance supercapacitors. Li X; Liu Y; Gao M; Cai K J Colloid Interface Sci; 2022 Dec; 627():142-150. PubMed ID: 35842964 [TBL] [Abstract][Full Text] [Related]
12. Actuation Properties of Paper Actuators Fabricated Using PEDOT/PSS Electrode Films. Wu Y; Minamikawa H; Nakazumi T; Hara Y J Oleo Sci; 2020 Oct; 69(10):1331-1337. PubMed ID: 32908098 [TBL] [Abstract][Full Text] [Related]
13. Multilayer poly(3,4-ethylenedioxythiophene)-dexamethasone and poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate-carbon nanotubes coatings on glassy carbon microelectrode arrays for controlled drug release. Castagnola E; Carli S; Vomero M; Scarpellini A; Prato M; Goshi N; Fadiga L; Kassegne S; Ricci D Biointerphases; 2017 Jul; 12(3):031002. PubMed ID: 28704999 [TBL] [Abstract][Full Text] [Related]
14. Ion Mobility in Thick and Thin Poly-3,4 Ethylenedioxythiophene Films-From EQCM to Actuation. Kiefer R; Weis DG; Velmurugan BK; Tamm T; Urban G Polymers (Basel); 2021 Jul; 13(15):. PubMed ID: 34372051 [TBL] [Abstract][Full Text] [Related]
15. Influence of relative humidity on the nanoscopic topography and dielectric constant of thin films of PPy:PSS. Sun L; Wang J; Butt HJ; Bonaccurso E Small; 2011 Apr; 7(7):950-6. PubMed ID: 21394908 [TBL] [Abstract][Full Text] [Related]
16. A comparative study of the photothermal efficiency of electrically conducting poly(3,4-ethylenedioxythiophene)-based nanomaterials with cancer cells. MacNeill CM; Wailes EM; Levi-Polyachenko NH J Nanosci Nanotechnol; 2013 Jun; 13(6):3784-91. PubMed ID: 23862408 [TBL] [Abstract][Full Text] [Related]
18. PEDOT-Based Conducting Polymer Actuators. Hu F; Xue Y; Xu J; Lu B Front Robot AI; 2019; 6():114. PubMed ID: 33501129 [TBL] [Abstract][Full Text] [Related]
19. Elucidation of the redox behavior of 2,5-dimercapto-1,3,4-thiadiazole (DMcT) at poly(3,4-ethylenedioxythiophene) (PEDOT)-modified electrodes and application of the DMcT-PEDOT composite cathodes to lithium/lithium ion batteries. Kiya Y; Hutchison GR; Henderson JC; Sarukawa T; Hatozaki O; Oyama N; Abruña HD Langmuir; 2006 Dec; 22(25):10554-63. PubMed ID: 17129030 [TBL] [Abstract][Full Text] [Related]
20. High rate performance of flexible pseudocapacitors fabricated using ionic-liquid-based proton conducting polymer electrolyte with poly(3, 4-ethylenedioxythiophene):poly(styrene sulfonate) and its hydrous ruthenium oxide composite electrodes. Sellam ; Hashmi SA ACS Appl Mater Interfaces; 2013 May; 5(9):3875-83. PubMed ID: 23548059 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]