These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 30441360)

  • 1. A Stochastic and Mathematically Integrative Model of the Gender Modulation of Cardiorespiratory Activity.
    BuSha BF; Stella MH
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():4536-4539. PubMed ID: 30441360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A stochastic and mathematically integrative model of the control of human heart rate.
    BuSha BF
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():3122-3125. PubMed ID: 29060559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A stochastic and integrative model of breathing.
    BuSha BF; Banis G
    Respir Physiol Neurobiol; 2017 Mar; 237():51-56. PubMed ID: 28057576
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exercise modulation of cardiorespiratory variability in humans.
    Busha BF
    Respir Physiol Neurobiol; 2010 Jun; 172(1-2):72-80. PubMed ID: 20452468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gender and breathing route modulate cardio-respiratory variability in humans.
    Busha BF; Hage E; Hofmann C
    Respir Physiol Neurobiol; 2009 Apr; 166(2):87-94. PubMed ID: 19429524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of wavelet-based filtering and data set length on the fractal scaling of cardiorespiratory variability.
    Busha BF
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4546-9. PubMed ID: 21095792
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Can the Detrended Fluctuation Analysis Reveal Nonlinear Components of Heart Rate Variabilityƒ.
    Castiglioni P; Parati G; Faini A
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6351-6354. PubMed ID: 31947295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fractal characteristics of breath to breath timing in sleeping infants.
    Larsen PD; Elder DE; Tzeng YC; Campbell AJ; Galletly DC
    Respir Physiol Neurobiol; 2004 Feb; 139(3):263-70. PubMed ID: 15122992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The independently fractal nature of respiration and heart rate during exercise under normobaric and hyperbaric conditions.
    West BJ; Griffin LA; Frederick HJ; Moon RE
    Respir Physiol Neurobiol; 2005 Feb; 145(2-3):219-33. PubMed ID: 15705537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Slow 0.1 Hz Breathing and Body Posture Induced Perturbations of RRI and Respiratory Signal Complexity and Cardiorespiratory Coupling.
    Matić Z; Platiša MM; Kalauzi A; Bojić T
    Front Physiol; 2020; 11():24. PubMed ID: 32132926
    [No Abstract]   [Full Text] [Related]  

  • 11. Two Operational Modes of Cardio-Respiratory Coupling Revealed by Pulse-Respiration Quotient.
    Kalauzi A; Matić Z; Platiša MM; Bojić T
    Bioengineering (Basel); 2023 Jan; 10(2):. PubMed ID: 36829674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantifying fractal dynamics of human respiration: age and gender effects.
    Peng CK; Mietus JE; Liu Y; Lee C; Hausdorff JM; Stanley HE; Goldberger AL; Lipsitz LA
    Ann Biomed Eng; 2002 May; 30(5):683-92. PubMed ID: 12108842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Local-scale analysis of cardiovascular signals by detrended fluctuations analysis: effects of posture and exercise.
    Castiglioni P; Quintin L; Civijian A; Parati G; Di Rienzo M
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5035-8. PubMed ID: 18003137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the fractal nature of heart rate variability in humans: effects of respiratory sinus arrhythmia.
    Yamamoto Y; Fortrat JO; Hughson RL
    Am J Physiol; 1995 Aug; 269(2 Pt 2):H480-6. PubMed ID: 7653612
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cardiac interbeat interval dynamics from childhood to senescence : comparison of conventional and new measures based on fractals and chaos theory.
    Pikkujämsä SM; Mäkikallio TH; Sourander LB; Räihä IJ; Puukka P; Skyttä J; Peng CK; Goldberger AL; Huikuri HV
    Circulation; 1999 Jul; 100(4):393-9. PubMed ID: 10421600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Age-related alterations in the fractal scaling of cardiac interbeat interval dynamics.
    Iyengar N; Peng CK; Morin R; Goldberger AL; Lipsitz LA
    Am J Physiol; 1996 Oct; 271(4 Pt 2):R1078-84. PubMed ID: 8898003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Applying fractal analysis to heart rate time series of sheep experiencing pain.
    Stubsjøen SM; Bohlin J; Skjerve E; Valle PS; Zanella AJ
    Physiol Behav; 2010 Aug; 101(1):74-80. PubMed ID: 20450925
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Is the heart preadapted to hypoxia? Evidence from fractal dynamics of heartbeat interval fluctuations at high altitude (5,050 m).
    Meyer M; Rahmel A; Marconi C; Grassi B; Skinner JE; Cerretelli P
    Integr Physiol Behav Sci; 1998; 33(1):9-40. PubMed ID: 9594353
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fractal fluctuations in breath number, period, and amplitude are independently controlled in awake, healthy humans.
    Gebber GL; Barman SM; Fadel PJ
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():4615-8. PubMed ID: 17947104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fractal fluctuations in human respiration.
    Fadel PJ; Barman SM; Phillips SW; Gebber GL
    J Appl Physiol (1985); 2004 Dec; 97(6):2056-64. PubMed ID: 15286051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.