BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 30441362)

  • 1. Fluid-structure Interaction in the Cerebral Venous Transverse Sinus.
    Shim EB; Heldt T
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():4544-4547. PubMed ID: 30441362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Starling resistors, autoregulation of cerebral perfusion and the pathogenesis of idiopathic intracranial hypertension.
    DE Simone R; Ranieri A; Bonavita V
    Panminerva Med; 2017 Mar; 59(1):76-89. PubMed ID: 27598891
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biological characteristics of the cerebral venous system and its hemodynamic response to intracranial hypertension.
    Chen J; Wang XM; Luan LM; Chao BT; Pang B; Song H; Pang Q
    Chin Med J (Engl); 2012 Apr; 125(7):1303-9. PubMed ID: 22613606
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new hemodynamic model for the study of cerebral venous outflow.
    Gadda G; Taibi A; Sisini F; Gambaccini M; Zamboni P; Ursino M
    Am J Physiol Heart Circ Physiol; 2015 Feb; 308(3):H217-31. PubMed ID: 25398980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced global mathematical model for studying cerebral venous blood flow.
    Müller LO; Toro EF
    J Biomech; 2014 Oct; 47(13):3361-72. PubMed ID: 25169660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A simulation model to study the role of the extracranial venous drainage pathways in intracranial hemodynamics.
    Gadda G; Taibi A; Sisini F; Gambaccini M; Sethi SK; Utriainen D; Haacke EM; Zamboni P; Ursino M
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():7800-3. PubMed ID: 26738101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blood flow in the cerebral venous system: modeling and simulation.
    Miraucourt O; Salmon S; Szopos M; Thiriet M
    Comput Methods Biomech Biomed Engin; 2017 Apr; 20(5):471-482. PubMed ID: 27802781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiology of cerebral venous blood flow: from experimental data in animals to normal function in humans.
    Schaller B
    Brain Res Brain Res Rev; 2004 Nov; 46(3):243-60. PubMed ID: 15571768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acute Cerebral Venous Thrombosis: Three-Dimensional Visualization and Quantification of Hemodynamic Alterations Using 4-Dimensional Flow Magnetic Resonance Imaging.
    Schuchardt F; Hennemuth A; Schroeder L; Meckel S; Markl M; Wehrum T; Harloff A
    Stroke; 2017 Mar; 48(3):671-677. PubMed ID: 28179559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cerebrospinal fluid circulation and associated intracranial dynamics. A radiologic investigation using MR imaging and radionuclide cisternography.
    Greitz D
    Acta Radiol Suppl; 1993; 386():1-23. PubMed ID: 8517189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics of cerebral venous and intracranial pressures.
    Nemoto EM
    Acta Neurochir Suppl; 2006; 96():435-7. PubMed ID: 16671500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Cerebral venous hemodynamics in chronic disorders of cerebral circulation].
    Todua FI; Gachechiladze DG; Beraia MV; Berulava DV
    Angiol Sosud Khir; 2005; 11(2):39-43. PubMed ID: 16037801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mathematical study of the role of non-linear venous compliance in the cranial volume-pressure test.
    Cirovic S; Walsh C; Fraser WD
    Med Biol Eng Comput; 2003 Sep; 41(5):579-88. PubMed ID: 14572009
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A simple mathematical model of the interaction between intracranial pressure and cerebral hemodynamics.
    Ursino M; Lodi CA
    J Appl Physiol (1985); 1997 Apr; 82(4):1256-69. PubMed ID: 9104864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Venous hemodynamics in neurological disorders: an analytical review with hydrodynamic analysis.
    Beggs CB
    BMC Med; 2013 May; 11():142. PubMed ID: 23724917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Mechanical problems in cerebral venous circulation].
    Lemaire R
    Phlebologie; 1988; 41(2):441-7. PubMed ID: 3406103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cerebral venous blood outflow: a theoretical model based on laboratory simulation.
    Piechnik SK; Czosnyka M; Richards HK; Whitfield PC; Pickard JD
    Neurosurgery; 2001 Nov; 49(5):1214-22; discussion 1222-3. PubMed ID: 11846915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intracranial venous system in the newborn: evaluation of normal anatomy and flow characteristics with color Doppler US.
    Taylor GA
    Radiology; 1992 May; 183(2):449-52. PubMed ID: 1561348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A canine model of intracranial arteriovenous shunt with acute cerebral venous hypertension.
    Yamada M; Miyasaka Y; Irikura K; Nagai S; Tanaka R
    Neurol Res; 1998 Jan; 20(1):73-8. PubMed ID: 9471106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cerebral arteriovenous malformation venous stenosis is associated with hemodynamic changes at the draining vein-venous sinus junction.
    Alqadi M; Brunozzi D; Linninger A; Amin-Hanjani S; Charbel FT; Alaraj A
    Med Hypotheses; 2019 Feb; 123():86-88. PubMed ID: 30696602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.