These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 30441387)
1. Development of a contactless energy harvesting system driven by contraction of skeletal muscle for implantable medical devices. Mochida T; Hijikata W Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():4648-4652. PubMed ID: 30441387 [TBL] [Abstract][Full Text] [Related]
2. Design optimization of contactless generator for implantable energy harvesting system utilizing electrically-stimulated muscle. Mochida T; Hijikata W Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():358-363. PubMed ID: 31945915 [TBL] [Abstract][Full Text] [Related]
3. Implantable power generation system utilizing muscle contractions excited by electrical stimulation. Sahara G; Hijikata W; Tomioka K; Shinshi T Proc Inst Mech Eng H; 2016 Jun; 230(6):569-78. PubMed ID: 27006422 [TBL] [Abstract][Full Text] [Related]
4. In vivo demonstration of a self-sustaining, implantable, stimulated-muscle-powered piezoelectric generator prototype. Lewandowski BE; Kilgore KL; Gustafson KJ Ann Biomed Eng; 2009 Nov; 37(11):2390-401. PubMed ID: 19657742 [TBL] [Abstract][Full Text] [Related]
5. Design considerations for an implantable, muscle powered piezoelectric system for generating electrical power. Lewandowski BE; Kilgore KL; Gustafson KJ Ann Biomed Eng; 2007 Apr; 35(4):631-41. PubMed ID: 17295066 [TBL] [Abstract][Full Text] [Related]
6. Development of a resonance generator utilizing incomplete tetanus of skeletal muscle Mochida T; Hijikata W Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():7248-7251. PubMed ID: 34892771 [TBL] [Abstract][Full Text] [Related]
7. Double chamber ventricular assist device with a roller screw linear actuator driven by left and right latissimus dorsi muscles. Takatani S; Takami Y; Nakazawa T; Jacobs G; Nose Y ASAIO J; 1995; 41(3):M475-80. PubMed ID: 8573850 [TBL] [Abstract][Full Text] [Related]
8. Contraction model of skeletal muscle driven by external electrical stimulation-Proposal and Identification. Hijikata W; Mochida T; Liu J; Sugimoto W Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4761-4764. PubMed ID: 34892275 [TBL] [Abstract][Full Text] [Related]
9. A new skeletal muscle linear-pull energy convertor as a power source for prosthetic circulatory support devices [corrected]. Farrar DJ; Hill JD J Heart Lung Transplant; 1992; 11(5):S341-50. PubMed ID: 1420227 [TBL] [Abstract][Full Text] [Related]
10. Emerging Implantable Energy Harvesters and Self-Powered Implantable Medical Electronics. Jiang D; Shi B; Ouyang H; Fan Y; Wang ZL; Li Z ACS Nano; 2020 Jun; 14(6):6436-6448. PubMed ID: 32459086 [TBL] [Abstract][Full Text] [Related]
11. Energy harvesting for human wearable and implantable bio-sensors. Mitcheson PD Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3432-6. PubMed ID: 21097254 [TBL] [Abstract][Full Text] [Related]
12. In vivo studies of an implantable energy convertor for skeletal muscle powered cardiac assist. Reichenbach SH; Farrar DJ; Diao E; Hill JD ASAIO J; 1997; 43(5):M668-72. PubMed ID: 9360130 [TBL] [Abstract][Full Text] [Related]
13. Modulation effects of cordycepin on the skeletal muscle contraction of toad gastrocnemius muscle. Yao LH; Meng W; Song RF; Xiong QP; Sun W; Luo ZQ; Yan WW; Li YP; Li XP; Li HH; Xiao P Eur J Pharmacol; 2014 Mar; 726():9-15. PubMed ID: 24447979 [TBL] [Abstract][Full Text] [Related]
14. In vivo performance of a muscle-powered drive system for implantable blood pumps. Trumble DR; Melvin DB; Dean DA; Magovern JA ASAIO J; 2008; 54(3):227-32. PubMed ID: 18496270 [TBL] [Abstract][Full Text] [Related]
15. Body motion for powering biomedical devices. Romero E; Warrington RO; Neuman MR Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2752-5. PubMed ID: 19964048 [TBL] [Abstract][Full Text] [Related]
16. Subcutaneous Solar Energy Harvesting for Self-Powered Wireless Implantable Sensor Systems. Wu T; Redoute JM; Yuce MR Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():4657-4660. PubMed ID: 30441389 [TBL] [Abstract][Full Text] [Related]
17. Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology. Hinchet R; Yoon HJ; Ryu H; Kim MK; Choi EK; Kim DS; Kim SW Science; 2019 Aug; 365(6452):491-494. PubMed ID: 31371614 [TBL] [Abstract][Full Text] [Related]
18. A pilot spectroscopy study on time-varying bioimpedance during electrically-induced muscle contraction. Sanchez B; Li J; Geisbush T; Bragos R; Rutkove SB Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3739-42. PubMed ID: 25570804 [TBL] [Abstract][Full Text] [Related]
19. A muscle-powered energy delivery system and means for chronic in vivo testing. Trumble DR; Magovern JA J Appl Physiol (1985); 1999 Jun; 86(6):2106-14. PubMed ID: 10368379 [TBL] [Abstract][Full Text] [Related]
20. Development of muscle connection components for implantable power generation system Sahara G; Yamada A; Inoue Y; Shiraishi Y; Hijikata W; Fukaya A; Yambe T Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():7206-7210. PubMed ID: 34892762 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]