These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 30441387)

  • 1. Development of a contactless energy harvesting system driven by contraction of skeletal muscle for implantable medical devices.
    Mochida T; Hijikata W
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():4648-4652. PubMed ID: 30441387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design optimization of contactless generator for implantable energy harvesting system utilizing electrically-stimulated muscle.
    Mochida T; Hijikata W
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():358-363. PubMed ID: 31945915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Implantable power generation system utilizing muscle contractions excited by electrical stimulation.
    Sahara G; Hijikata W; Tomioka K; Shinshi T
    Proc Inst Mech Eng H; 2016 Jun; 230(6):569-78. PubMed ID: 27006422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo demonstration of a self-sustaining, implantable, stimulated-muscle-powered piezoelectric generator prototype.
    Lewandowski BE; Kilgore KL; Gustafson KJ
    Ann Biomed Eng; 2009 Nov; 37(11):2390-401. PubMed ID: 19657742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design considerations for an implantable, muscle powered piezoelectric system for generating electrical power.
    Lewandowski BE; Kilgore KL; Gustafson KJ
    Ann Biomed Eng; 2007 Apr; 35(4):631-41. PubMed ID: 17295066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a resonance generator utilizing incomplete tetanus of skeletal muscle
    Mochida T; Hijikata W
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():7248-7251. PubMed ID: 34892771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Double chamber ventricular assist device with a roller screw linear actuator driven by left and right latissimus dorsi muscles.
    Takatani S; Takami Y; Nakazawa T; Jacobs G; Nose Y
    ASAIO J; 1995; 41(3):M475-80. PubMed ID: 8573850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contraction model of skeletal muscle driven by external electrical stimulation-Proposal and Identification.
    Hijikata W; Mochida T; Liu J; Sugimoto W
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4761-4764. PubMed ID: 34892275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new skeletal muscle linear-pull energy convertor as a power source for prosthetic circulatory support devices [corrected].
    Farrar DJ; Hill JD
    J Heart Lung Transplant; 1992; 11(5):S341-50. PubMed ID: 1420227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Emerging Implantable Energy Harvesters and Self-Powered Implantable Medical Electronics.
    Jiang D; Shi B; Ouyang H; Fan Y; Wang ZL; Li Z
    ACS Nano; 2020 Jun; 14(6):6436-6448. PubMed ID: 32459086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy harvesting for human wearable and implantable bio-sensors.
    Mitcheson PD
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3432-6. PubMed ID: 21097254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo studies of an implantable energy convertor for skeletal muscle powered cardiac assist.
    Reichenbach SH; Farrar DJ; Diao E; Hill JD
    ASAIO J; 1997; 43(5):M668-72. PubMed ID: 9360130
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation effects of cordycepin on the skeletal muscle contraction of toad gastrocnemius muscle.
    Yao LH; Meng W; Song RF; Xiong QP; Sun W; Luo ZQ; Yan WW; Li YP; Li XP; Li HH; Xiao P
    Eur J Pharmacol; 2014 Mar; 726():9-15. PubMed ID: 24447979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo performance of a muscle-powered drive system for implantable blood pumps.
    Trumble DR; Melvin DB; Dean DA; Magovern JA
    ASAIO J; 2008; 54(3):227-32. PubMed ID: 18496270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Body motion for powering biomedical devices.
    Romero E; Warrington RO; Neuman MR
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2752-5. PubMed ID: 19964048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subcutaneous Solar Energy Harvesting for Self-Powered Wireless Implantable Sensor Systems.
    Wu T; Redoute JM; Yuce MR
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():4657-4660. PubMed ID: 30441389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology.
    Hinchet R; Yoon HJ; Ryu H; Kim MK; Choi EK; Kim DS; Kim SW
    Science; 2019 Aug; 365(6452):491-494. PubMed ID: 31371614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A pilot spectroscopy study on time-varying bioimpedance during electrically-induced muscle contraction.
    Sanchez B; Li J; Geisbush T; Bragos R; Rutkove SB
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3739-42. PubMed ID: 25570804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A muscle-powered energy delivery system and means for chronic in vivo testing.
    Trumble DR; Magovern JA
    J Appl Physiol (1985); 1999 Jun; 86(6):2106-14. PubMed ID: 10368379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of muscle connection components for implantable power generation system
    Sahara G; Yamada A; Inoue Y; Shiraishi Y; Hijikata W; Fukaya A; Yambe T
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():7206-7210. PubMed ID: 34892762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.