These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 30441425)
1. Estimation of Finger Joint Angle Based on Neural Drive Extracted from High-Density Electromyography. Dai C; Cao Y; Hu X Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():4820-4823. PubMed ID: 30441425 [TBL] [Abstract][Full Text] [Related]
2. Finger Joint Angle Estimation Based on Motoneuron Discharge Activities. Dai C; Hu X IEEE J Biomed Health Inform; 2020 Mar; 24(3):760-767. PubMed ID: 31283514 [TBL] [Abstract][Full Text] [Related]
3. Real-time isometric finger extension force estimation based on motor unit discharge information. Zheng Y; Hu X J Neural Eng; 2019 Oct; 16(6):066006. PubMed ID: 31234147 [TBL] [Abstract][Full Text] [Related]
4. Estimation of Muscle Force Based on Neural Drive in a Hemispheric Stroke Survivor. Dai C; Zheng Y; Hu X Front Neurol; 2018; 9():187. PubMed ID: 29628911 [TBL] [Abstract][Full Text] [Related]
5. Prediction of Individual Finger Forces Based on Decoded Motoneuron Activities. Dai C; Cao Y; Hu X Ann Biomed Eng; 2019 Jun; 47(6):1357-1368. PubMed ID: 30834478 [TBL] [Abstract][Full Text] [Related]
6. Robust neural decoding for dexterous control of robotic hand kinematics. Fan J; Vargas L; Kamper DG; Hu X Comput Biol Med; 2023 Aug; 162():107139. PubMed ID: 37301095 [TBL] [Abstract][Full Text] [Related]
7. Concurrent Estimation of Finger Flexion and Extension Forces Using Motoneuron Discharge Information. Zheng Y; Hu X IEEE Trans Biomed Eng; 2021 May; 68(5):1638-1645. PubMed ID: 33534701 [TBL] [Abstract][Full Text] [Related]
8. Dexterous Force Estimation during Finger Flexion and Extension Using Motor Unit Discharge Information. Zheng Y; Hu X Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3130-3133. PubMed ID: 33018668 [TBL] [Abstract][Full Text] [Related]
9. Continuous estimation of finger joint angles using muscle activation inputs from surface EMG signals. Ngeo J; Tamei T; Shibata T Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2756-9. PubMed ID: 23366496 [TBL] [Abstract][Full Text] [Related]
10. Simultaneous and Proportional Control of Wrist and Hand Movements Based on a Neural-Driven Musculoskeletal Model. Li J; Yue S; Pan L IEEE Trans Neural Syst Rehabil Eng; 2023; 31():3999-4007. PubMed ID: 37815968 [TBL] [Abstract][Full Text] [Related]
11. Prediction of finger kinematics from discharge timings of motor units: implications for intuitive control of myoelectric prostheses. Chen C; Chai G; Guo W; Sheng X; Farina D; Zhu X J Neural Eng; 2019 Apr; 16(2):026005. PubMed ID: 30523815 [TBL] [Abstract][Full Text] [Related]
12. Concurrent and Continuous Prediction of Finger Kinetics and Kinematics via Motoneuron Activities. Roy R; Zheng Y; Kamper DG; Hu X IEEE Trans Biomed Eng; 2023 Jun; 70(6):1911-1920. PubMed ID: 37015495 [TBL] [Abstract][Full Text] [Related]
13. Neural network committees for finger joint angle estimation from surface EMG signals. Shrirao NA; Reddy NP; Kosuri DR Biomed Eng Online; 2009 Jan; 8():2. PubMed ID: 19154615 [TBL] [Abstract][Full Text] [Related]
14. A generic neural network model to estimate populational neural activity for robust neural decoding. Roy R; Xu F; Kamper DG; Hu X Comput Biol Med; 2022 May; 144():105359. PubMed ID: 35247763 [TBL] [Abstract][Full Text] [Related]
15. A Deep CNN Framework for Neural Drive Estimation From HD-EMG Across Contraction Intensities and Joint Angles. Wen Y; Kim SJ; Avrillon S; Levine JT; Hug F; Pons JL IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2950-2959. PubMed ID: 36251912 [TBL] [Abstract][Full Text] [Related]
16. Continuous and simultaneous estimation of finger kinematics using inputs from an EMG-to-muscle activation model. Ngeo JG; Tamei T; Shibata T J Neuroeng Rehabil; 2014 Aug; 11():122. PubMed ID: 25123024 [TBL] [Abstract][Full Text] [Related]
17. Concurrent Prediction of Finger Forces Based on Source Separation and Classification of Neuron Discharge Information. Zheng Y; Hu X Int J Neural Syst; 2021 Jun; 31(6):2150010. PubMed ID: 33541251 [TBL] [Abstract][Full Text] [Related]
18. Real-time finger force prediction via parallel convolutional neural networks: a preliminary study. Xu F; Zheng Y; Hu X Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3126-3129. PubMed ID: 33018667 [TBL] [Abstract][Full Text] [Related]
19. Noninvasive, accurate assessment of the behavior of representative populations of motor units in targeted reinnervated muscles. Farina D; Rehbaum H; Holobar A; Vujaklija I; Jiang N; Hofer C; Salminger S; van Vliet HW; Aszmann OC IEEE Trans Neural Syst Rehabil Eng; 2014 Jul; 22(4):810-9. PubMed ID: 24760935 [TBL] [Abstract][Full Text] [Related]
20. Predicting wrist kinematics from motor unit discharge timings for the control of active prostheses. Kapelner T; Vujaklija I; Jiang N; Negro F; Aszmann OC; Principe J; Farina D J Neuroeng Rehabil; 2019 Apr; 16(1):47. PubMed ID: 30953528 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]