These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 30441455)

  • 1. Performance of conformable, dry EEG sensors.
    Bradford JC; Burke B; Nguyen C; Slipher GA; Mrozek R; Hairston D
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():4957-4960. PubMed ID: 30441455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon nanofiber-filled conductive silicone elastomers as soft, dry bioelectronic interfaces.
    Slipher GA; Hairston WD; Bradford JC; Bain ED; Mrozek RA
    PLoS One; 2018; 13(2):e0189415. PubMed ID: 29408942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel Multipin Electrode Cap System for Dry Electroencephalography.
    Fiedler P; Pedrosa P; Griebel S; Fonseca C; Vaz F; Supriyanto E; Zanow F; Haueisen J
    Brain Topogr; 2015 Sep; 28(5):647-656. PubMed ID: 25998854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance of dry electrode with bristle in recording EEG rhythms across brain state changes.
    Kitoko V; Nguyen TN; Nguyen JS; Tran Y; Nguyen HT
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():59-62. PubMed ID: 22254250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Multichannel EEG Acquisition System With Novel Ag NWs/PDMS Flexible Dry Electrodes.
    Wang Z; Chen C; Li W; Yuan W; Han T; Sun C; Tao L; Zhao Y; Chen W
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1299-1302. PubMed ID: 30440629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Validation of Soft Multipin Dry EEG Electrodes.
    Heijs JJA; Havelaar RJ; Fiedler P; van Wezel RJA; Heida T
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34696039
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparative study of electrical potential sensors and Ag/AgCl electrodes for characterising spontaneous and event related electroencephalagram signals.
    Fatoorechi M; Parkinson J; Prance RJ; Prance H; Seth AK; Schwartzman DJ
    J Neurosci Methods; 2015 Aug; 251():7-16. PubMed ID: 25936849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A dry electrode for EEG recording.
    Taheri BA; Knight RT; Smith RL
    Electroencephalogr Clin Neurophysiol; 1994 May; 90(5):376-83. PubMed ID: 7514984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation-Free Measurement of Event-Related Potential in Oddball Tasks From Hairy Parts Using Candle-Like Dry Microneedle Electrodes.
    Yoshida Y; Kudo Y; Hoshino E; Minagawa Y; Miki N
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():4685-4688. PubMed ID: 30441395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validation of a wireless dry electrode system for electroencephalography.
    Wyckoff SN; Sherlin LH; Ford NL; Dalke D
    J Neuroeng Rehabil; 2015 Oct; 12():95. PubMed ID: 26520574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing a novel polymer-wick based electrode for EEG neurophysiological research.
    Pasion R; Paiva TO; Pedrosa P; Gaspar H; Vasconcelos B; Martins AC; Amaral MH; Nóbrega JM; Páscoa R; Fonseca C; Barbosa F
    J Neurosci Methods; 2016 Jul; 267():126-31. PubMed ID: 27091368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CNT/PDMS-based canal-typed ear electrodes for inconspicuous EEG recording.
    Hoon Lee J; Min Lee S; Jin Byeon H; Sook Hong J; Suk Park K; Lee SH
    J Neural Eng; 2014 Aug; 11(4):046014. PubMed ID: 24963747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High and dry? Comparing active dry EEG electrodes to active and passive wet electrodes.
    Mathewson KE; Harrison TJ; Kizuk SA
    Psychophysiology; 2017 Jan; 54(1):74-82. PubMed ID: 28000254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-Adhesive and Capacitive Carbon Nanotube-Based Electrode to Record Electroencephalograph Signals From the Hairy Scalp.
    Lee SM; Kim JH; Park C; Hwang JY; Hong JS; Lee KH; Lee SH
    IEEE Trans Biomed Eng; 2016 Jan; 63(1):138-47. PubMed ID: 26390442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bristle-sensors--low-cost flexible passive dry EEG electrodes for neurofeedback and BCI applications.
    Grozea C; Voinescu CD; Fazli S
    J Neural Eng; 2011 Apr; 8(2):025008. PubMed ID: 21436526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validation of the g.tec Unicorn Hybrid Black wireless EEG system.
    Pontifex MB; Coffman CA
    Psychophysiology; 2023 Sep; 60(9):e14320. PubMed ID: 37171024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A high-speed brain-computer interface (BCI) using dry EEG electrodes.
    Spüler M
    PLoS One; 2017; 12(2):e0172400. PubMed ID: 28225794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Dry Revolution: Evaluation of Three Different EEG Dry Electrode Types in Terms of Signal Spectral Features, Mental States Classification and Usability.
    Di Flumeri G; Aricò P; Borghini G; Sciaraffa N; Di Florio A; Babiloni F
    Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30893791
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new EEG recording system for passive dry electrodes.
    Gargiulo G; Calvo RA; Bifulco P; Cesarelli M; Jin C; Mohamed A; van Schaik A
    Clin Neurophysiol; 2010 May; 121(5):686-93. PubMed ID: 20097606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dry and noncontact EEG sensors for mobile brain-computer interfaces.
    Chi YM; Wang YT; Wang Y; Maier C; Jung TP; Cauwenberghs G
    IEEE Trans Neural Syst Rehabil Eng; 2012 Mar; 20(2):228-35. PubMed ID: 22180514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.