These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
99 related articles for article (PubMed ID: 30441455)
41. A comparison of recording modalities of P300 event-related potentials (ERP) for brain-computer interface (BCI) paradigm. Mayaud L; Congedo M; Van Laghenhove A; Orlikowski D; Figère M; Azabou E; Cheliout-Heraut F Neurophysiol Clin; 2013 Oct; 43(4):217-27. PubMed ID: 24094907 [TBL] [Abstract][Full Text] [Related]
42. Electrogenerated chemiluminescence from CdS hollow spheres composited with carbon nanofiber and its sensing application. Zhu Q; Han M; Wang H; Liu L; Bao J; Dai Z; Shen J Analyst; 2010 Oct; 135(10):2579-84. PubMed ID: 20694229 [TBL] [Abstract][Full Text] [Related]
43. Analysis of a Low-Cost EEG Monitoring System and Dry Electrodes toward Clinical Use in the Neonatal ICU. O'Sullivan M; Temko A; Bocchino A; O'Mahony C; Boylan G; Popovici E Sensors (Basel); 2019 Jun; 19(11):. PubMed ID: 31212613 [TBL] [Abstract][Full Text] [Related]
44. Single trial classification of motor imagination using 6 dry EEG electrodes. Popescu F; Fazli S; Badower Y; Blankertz B; Müller KR PLoS One; 2007 Jul; 2(7):e637. PubMed ID: 17653264 [TBL] [Abstract][Full Text] [Related]
45. Real-Life Dry-Contact Ear-EEG. Kappel SL; Kidmose P Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5470-5474. PubMed ID: 30441575 [TBL] [Abstract][Full Text] [Related]
46. Design and Verification of a Dry Sensor-Based Multi-Channel Digital Active Circuit for Human Brain Electroencephalography Signal Acquisition Systems. Lin CT; Liu CH; Wang PS; King JT; Liao LD Micromachines (Basel); 2019 Oct; 10(11):. PubMed ID: 31731489 [TBL] [Abstract][Full Text] [Related]
47. Soft, comfortable polymer dry electrodes for high quality ECG and EEG recording. Chen YH; Op de Beeck M; Vanderheyden L; Carrette E; Mihajlović V; Vanstreels K; Grundlehner B; Gadeyne S; Boon P; Van Hoof C Sensors (Basel); 2014 Dec; 14(12):23758-80. PubMed ID: 25513825 [TBL] [Abstract][Full Text] [Related]
48. New disposable forehead electrode set with excellent signal quality and imaging compatibility. Myllymaa S; Lepola P; Töyräs J; Hukkanen T; Mervaala E; Lappalainen R; Myllymaa K J Neurosci Methods; 2013 Apr; 215(1):103-9. PubMed ID: 23411124 [TBL] [Abstract][Full Text] [Related]
49. Evaluation of a Low-cost and Low-noise Active Dry Electrode for Long-term Biopotential Recording. Pourahmad A; Mahnam A J Med Signals Sens; 2016; 6(4):197-202. PubMed ID: 28028495 [TBL] [Abstract][Full Text] [Related]
50. Pd-Ni alloy nanoparticle/carbon nanofiber composites: preparation, structure, and superior electrocatalytic properties for sugar analysis. Guo Q; Liu D; Zhang X; Li L; Hou H; Niwa O; You T Anal Chem; 2014 Jun; 86(12):5898-905. PubMed ID: 24837693 [TBL] [Abstract][Full Text] [Related]
51. Non-contact Wearable EEG Sensors for SSVEP-based Brain Computer Interface Applications. Soleymanpour R; Patel C; Kim I Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2016-2019. PubMed ID: 30440796 [TBL] [Abstract][Full Text] [Related]
52. EEG electrode positions outside the hairline to monitor sleep in man. Dyson RJ; Thornton C; Doré CJ Sleep; 1984; 7(2):180-8. PubMed ID: 6740062 [TBL] [Abstract][Full Text] [Related]
53. A study of evoked potentials from ear-EEG. Kidmose P; Looney D; Ungstrup M; Rank ML; Mandic DP IEEE Trans Biomed Eng; 2013 Oct; 60(10):2824-30. PubMed ID: 23722447 [TBL] [Abstract][Full Text] [Related]
54. Event-Related Potentials Measured From In and Around the Ear Electrodes Integrated in a Live Hearing Device for Monitoring Sound Perception. Denk F; Grzybowski M; Ernst SMA; Kollmeier B; Debener S; Bleichner MG Trends Hear; 2018; 22():2331216518788219. PubMed ID: 30022733 [TBL] [Abstract][Full Text] [Related]
55. Wireless instrumentation system based on dry electrodes for acquiring EEG signals. Dias NS; Carmo JP; Mendes PM; Correia JH Med Eng Phys; 2012 Sep; 34(7):972-81. PubMed ID: 22153322 [TBL] [Abstract][Full Text] [Related]
56. Comparison of foam-based and spring-loaded dry EEG electrodes with wet electrodes in resting and moving conditions. Yeung A; Garudadri H; Van Toen C; Mercier P; Balkan O; Makeig S; Virji-Babul N Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():7131-4. PubMed ID: 26737936 [TBL] [Abstract][Full Text] [Related]
57. Carbon nanofiber electrodes and controlled nanogaps for scanning electrochemical microscopy experiments. Tel-Vered R; Walsh DA; Mehrgardi MA; Bard AJ Anal Chem; 2006 Oct; 78(19):6959-66. PubMed ID: 17007521 [TBL] [Abstract][Full Text] [Related]
58. PEDOT-CNT-Coated Low-Impedance, Ultra-Flexible, and Brain-Conformable Micro-ECoG Arrays. Castagnola E; Maiolo L; Maggiolini E; Minotti A; Marrani M; Maita F; Pecora A; Angotzi GN; Ansaldo A; Boffini M; Fadiga L; Fortunato G; Ricci D IEEE Trans Neural Syst Rehabil Eng; 2015 May; 23(3):342-50. PubMed ID: 25073174 [TBL] [Abstract][Full Text] [Related]
59. Modular multipin electrodes for comfortable dry EEG. Fiedler P; Strohmeier D; Hunold A; Griebel S; Muhle R; Schreiber M; Pedrosa P; Vasconcelos B; Fonseca C; Vaz F; Haueisen J Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5705-5708. PubMed ID: 28269550 [TBL] [Abstract][Full Text] [Related]
60. Towards out-of-the-lab EEG in uncontrolled environments: Feasibility study of dry EEG recordings during exercise bike riding. Kohli S; Casson AJ Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1025-8. PubMed ID: 26736439 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]