These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 30441477)
1. A Novel µECoG Electrode Interface for Comparison of Local and Common Averaged Referenced Signals. Williams AJ; Trumpis M; Bent B; Chiang CH; Viventi J Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5057-5060. PubMed ID: 30441477 [TBL] [Abstract][Full Text] [Related]
2. Mapping the fine structure of cortical activity with different micro-ECoG electrode array geometries. Wang X; Gkogkidis CA; Iljina O; Fiederer LDJ; Henle C; Mader I; Kaminsky J; Stieglitz T; Gierthmuehlen M; Ball T J Neural Eng; 2017 Oct; 14(5):056004. PubMed ID: 28597847 [TBL] [Abstract][Full Text] [Related]
3. Progress in the Field of Micro-Electrocorticography. Shokoueinejad M; Park DW; Jung YH; Brodnick SK; Novello J; Dingle A; Swanson KI; Baek DH; Suminski AJ; Lake WB; Ma Z; Williams J Micromachines (Basel); 2019 Jan; 10(1):. PubMed ID: 30658503 [TBL] [Abstract][Full Text] [Related]
4. A cortical recording platform utilizing microECoG electrode arrays. Kim J; Wilson JA; Williams JC Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5353-7. PubMed ID: 18003217 [TBL] [Abstract][Full Text] [Related]
5. Sufficient sampling for kriging prediction of cortical potential in rat, monkey, and human µECoG. Trumpis M; Chiang CH; Orsborn AL; Bent B; Li J; Rogers JA; Pesaran B; Cogan G; Viventi J J Neural Eng; 2021 Mar; 18(3):. PubMed ID: 33326943 [No Abstract] [Full Text] [Related]
6. Transparent, low-autofluorescence microECoG device for simultaneous Ca Zátonyi A; Madarász M; Szabó Á; Lőrincz T; Hodován R; Rózsa B; Fekete Z J Neural Eng; 2020 Feb; 17(1):016062. PubMed ID: 31822640 [TBL] [Abstract][Full Text] [Related]
7. Multiplexed Surface Electrode Arrays Based on Metal Oxide Thin-Film Electronics for High-Resolution Cortical Mapping. Londoño-Ramírez H; Huang X; Cools J; Chrzanowska A; Brunner C; Ballini M; Hoffman L; Steudel S; Rolin C; Mora Lopez C; Genoe J; Haesler S Adv Sci (Weinh); 2024 Mar; 11(10):e2308507. PubMed ID: 38145348 [TBL] [Abstract][Full Text] [Related]
8. In vitro and in vivo stability of black-platinum coatings on flexible, polymer microECoG arrays. Zátonyi A; Fedor F; Borhegyi Z; Fekete Z J Neural Eng; 2018 Oct; 15(5):054003. PubMed ID: 29947620 [TBL] [Abstract][Full Text] [Related]
9. Mapping of sheep sensory cortex with a novel microelectrocorticography grid. Gierthmuehlen M; Wang X; Gkogkidis A; Henle C; Fischer J; Fehrenbacher T; Kohler F; Raab M; Mader I; Kuehn C; Foerster K; Haberstroh J; Freiman TM; Stieglitz T; Rickert J; Schuettler M; Ball T J Comp Neurol; 2014 Nov; 522(16):3590-608. PubMed ID: 24851798 [TBL] [Abstract][Full Text] [Related]
10. A low-cost, multiplexed μECoG system for high-density recordings in freely moving rodents. Insanally M; Trumpis M; Wang C; Chiang CH; Woods V; Palopoli-Trojani K; Bossi S; Froemke RC; Viventi J J Neural Eng; 2016 Apr; 13(2):026030-26030. PubMed ID: 26975462 [TBL] [Abstract][Full Text] [Related]
11. Multi-scale recordings for neuroprosthetic control of finger movements. Baker J; Bishop W; Kellis S; Levy T; House P; Greger B Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():4573-7. PubMed ID: 19963841 [TBL] [Abstract][Full Text] [Related]
12. New thin-film surface electrode array enables brain mapping with high spatial acuity in rodents. Konerding WS; Froriep UP; Kral A; Baumhoff P Sci Rep; 2018 Feb; 8(1):3825. PubMed ID: 29491453 [TBL] [Abstract][Full Text] [Related]
13. Chronic multisite brain recordings from a totally implantable bidirectional neural interface: experience in 5 patients with Parkinson's disease. Swann NC; de Hemptinne C; Miocinovic S; Qasim S; Ostrem JL; Galifianakis NB; Luciano MS; Wang SS; Ziman N; Taylor R; Starr PA J Neurosurg; 2018 Feb; 128(2):605-616. PubMed ID: 28409730 [TBL] [Abstract][Full Text] [Related]
14. Development of a novel, concentric micro-ECoG array enabling simultaneous detection of a single location by multiple electrode sizes. Akamine IR; Garich JV; Gulick DW; Hara SA; Benscoter MA; Kuehn ST; Worrell GA; Raupp GB; Blain Christen JM Biomed Phys Eng Express; 2024 Jun; 10(4):. PubMed ID: 38744259 [No Abstract] [Full Text] [Related]
16. PEDOT-CNT-Coated Low-Impedance, Ultra-Flexible, and Brain-Conformable Micro-ECoG Arrays. Castagnola E; Maiolo L; Maggiolini E; Minotti A; Marrani M; Maita F; Pecora A; Angotzi GN; Ansaldo A; Boffini M; Fadiga L; Fortunato G; Ricci D IEEE Trans Neural Syst Rehabil Eng; 2015 May; 23(3):342-50. PubMed ID: 25073174 [TBL] [Abstract][Full Text] [Related]
17. Using a common average reference to improve cortical neuron recordings from microelectrode arrays. Ludwig KA; Miriani RM; Langhals NB; Joseph MD; Anderson DJ; Kipke DR J Neurophysiol; 2009 Mar; 101(3):1679-89. PubMed ID: 19109453 [TBL] [Abstract][Full Text] [Related]
18. Optimal referencing for stereo-electroencephalographic (SEEG) recordings. Li G; Jiang S; Paraskevopoulou SE; Wang M; Xu Y; Wu Z; Chen L; Zhang D; Schalk G Neuroimage; 2018 Dec; 183():327-335. PubMed ID: 30121338 [TBL] [Abstract][Full Text] [Related]
19. Independent Component Decomposition of Human Somatosensory Evoked Potentials Recorded by Micro-Electrocorticography. Rembado I; Castagnola E; Turella L; Ius T; Budai R; Ansaldo A; Angotzi GN; Debertoldi F; Ricci D; Skrap M; Fadiga L Int J Neural Syst; 2017 Jun; 27(4):1650052. PubMed ID: 27712455 [TBL] [Abstract][Full Text] [Related]
20. High-density mapping of primate digit representations with a 1152-channel Kaiju T; Inoue M; Hirata M; Suzuki T J Neural Eng; 2021 Mar; 18(3):. PubMed ID: 33530064 [No Abstract] [Full Text] [Related] [Next] [New Search]