These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 30441507)

  • 1. Reconstructing Neural Activity and Kinematics Using a Systems-Level Model of Sensorimotor Control.
    Saxena S; D'Aleo R; Schieber M; Dahleh M; Sarma SV
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5182-5186. PubMed ID: 30441507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance Limitations in Sensorimotor Control: Trade-Offs Between Neural Computation and Accuracy in Tracking Fast Movements.
    Saxena S; Sarma SV; Dahleh M
    Neural Comput; 2020 May; 32(5):865-886. PubMed ID: 32186997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning with slight forgetting optimizes sensorimotor transformation in redundant motor systems.
    Hirashima M; Nozaki D
    PLoS Comput Biol; 2012; 8(6):e1002590. PubMed ID: 22761568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimal feedback control to describe multiple representations of primary motor cortex neurons.
    Ueyama Y
    J Comput Neurosci; 2017 Aug; 43(1):93-106. PubMed ID: 28573354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Perspectives on classical controversies about the motor cortex.
    Omrani M; Kaufman MT; Hatsopoulos NG; Cheney PD
    J Neurophysiol; 2017 Sep; 118(3):1828-1848. PubMed ID: 28615340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From the motor cortex to the movement and back again.
    Teka WW; Hamade KC; Barnett WH; Kim T; Markin SN; Rybak IA; Molkov YI
    PLoS One; 2017; 12(6):e0179288. PubMed ID: 28632736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fuzzy neuronal model of motor control inspired by cerebellar pathways to online and gradually learn inverse biomechanical functions in the presence of delay.
    Salimi-Badr A; Ebadzadeh MM; Darlot C
    Biol Cybern; 2017 Dec; 111(5-6):421-438. PubMed ID: 28993878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-Dimensional Motor Cortex Dynamics Preserve Kinematics Information During Unconstrained Locomotion in Nonhuman Primates.
    Xing D; Aghagolzadeh M; Truccolo W; Borton D
    Front Neurosci; 2019; 13():1046. PubMed ID: 31636530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trial-by-Trial Motor Cortical Correlates of a Rapidly Adapting Visuomotor Internal Model.
    Stavisky SD; Kao JC; Ryu SI; Shenoy KV
    J Neurosci; 2017 Feb; 37(7):1721-1732. PubMed ID: 28087767
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relations of motor cortex neural discharge to kinematics of passive and active elbow movements in the monkey.
    Flament D; Hore J
    J Neurophysiol; 1988 Oct; 60(4):1268-84. PubMed ID: 3193157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recurrent neural networks controlling musculoskeletal models predict motor cortex activity during novel limb movements.
    Almani MN; Saxena S
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():3350-3356. PubMed ID: 36086532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Principal component analysis of M1 neurophysiology data suggests a motor-control system-architecture template.
    Krouchev NI; Galiana HL; Kalaska JF
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():1724-8. PubMed ID: 19163012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An input-output linear time invariant model captures neuronal firing responses to external and behavioral events.
    D'Aleo R; Rouse A; Schieber M; Sarma SV
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():970-973. PubMed ID: 29060035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A hierarchical neural-network model for control and learning of voluntary movement.
    Kawato M; Furukawa K; Suzuki R
    Biol Cybern; 1987; 57(3):169-85. PubMed ID: 3676355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coding of movement- and force-related information in primate primary motor cortex: a computational approach.
    Guigon E; Baraduc P; Desmurget M
    Eur J Neurosci; 2007 Jul; 26(1):250-60. PubMed ID: 17573920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Movement Decomposition in the Primary Motor Cortex.
    Kadmon Harpaz N; Ungarish D; Hatsopoulos NG; Flash T
    Cereb Cortex; 2019 Apr; 29(4):1619-1633. PubMed ID: 29668846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A multi-level approach to understanding upper limb function.
    Kurtzer I; Scott SH
    Prog Brain Res; 2007; 165():347-62. PubMed ID: 17925256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feedback and feedforward adaptation to visuomotor delay during reaching and slicing movements.
    Botzer L; Karniel A
    Eur J Neurosci; 2013 Jul; 38(1):2108-23. PubMed ID: 23701418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Task-Independent Cognitive State Transition Detection From Cortical Neurons During 3-D Reach-to-Grasp Movements.
    Kang X; Sarma SV; Santaniello S; Schieber M; Thakor NV
    IEEE Trans Neural Syst Rehabil Eng; 2015 Jul; 23(4):676-82. PubMed ID: 25643410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlations Between Primary Motor Cortex Activity with Recent Past and Future Limb Motion During Unperturbed Reaching.
    Takei T; Crevecoeur F; Herter TM; Cross KP; Scott SH
    J Neurosci; 2018 Sep; 38(36):7787-7799. PubMed ID: 30037832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.