These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 30441525)

  • 1. Three-Element Fractional-Order Viscoelastic Arterial Windkessel Model.
    Bahloul MA; Laleg-Kirati TM
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5261-5266. PubMed ID: 30441525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of Fractional-Order Arterial Windkessel as a Model of Aortic Input Impedance.
    Bahloul MA; Laleg-Kirati TM
    IEEE Open J Eng Med Biol; 2020; 1():123-132. PubMed ID: 35402942
    [No Abstract]   [Full Text] [Related]  

  • 3. Towards Characterization of the Complex and Frequency-dependent Arterial Compliance based on Fractional-order Capacitor.
    Bahloul MA; Aboelkassem Y; Laleg-Kirati TM
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():5559-5565. PubMed ID: 34892384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-Element Fractional-Order Windkessel Model to Assess the Arterial Input Impedance.
    Bahloul MA; Laleg Kirati TM
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5018-5023. PubMed ID: 31946987
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fractional-order model representations of apparent vascular compliance as an alternative in the analysis of arterial stiffness: an
    Bahloul MA; Laleg Kirati TM
    Physiol Meas; 2021 May; 42(4):. PubMed ID: 33761470
    [No Abstract]   [Full Text] [Related]  

  • 6. Arterial viscoelasticity: a fractional derivative model.
    Craiem DO; Armentano RL
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1098-101. PubMed ID: 17946443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational hemodynamics in arteries with the one-dimensional augmented fluid-structure interaction system: viscoelastic parameters estimation and comparison with in-vivo data.
    Bertaglia G; Navas-Montilla A; Valiani A; Monge GarcĂ­a MI; Murillo J; Caleffi V
    J Biomech; 2020 Feb; 100():109595. PubMed ID: 31911051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fractional-order viscoelasticity applied to describe uniaxial stress relaxation of human arteries.
    Craiem D; Rojo FJ; Atienza JM; Armentano RL; Guinea GV
    Phys Med Biol; 2008 Sep; 53(17):4543-54. PubMed ID: 18677037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human Hypertension Blood Flow Model Using Fractional Calculus.
    Bahloul MA; Aboelkassem Y; Laleg-Kirati TM
    Front Physiol; 2022; 13():838593. PubMed ID: 35392372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative study of viscoelastic arterial wall models in nonlinear one-dimensional finite element simulations of blood flow.
    Raghu R; Vignon-Clementel IE; Figueroa CA; Taylor CA
    J Biomech Eng; 2011 Aug; 133(8):081003. PubMed ID: 21950896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Total arterial inertance as the fourth element of the windkessel model.
    Stergiopulos N; Westerhof BE; Westerhof N
    Am J Physiol; 1999 Jan; 276(1):H81-8. PubMed ID: 9887020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fractional-order viscoelasticity in one-dimensional blood flow models.
    Perdikaris P; Karniadakis GE
    Ann Biomed Eng; 2014 May; 42(5):1012-23. PubMed ID: 24414838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fractional modeling of viscoelasticity in 3D cerebral arteries and aneurysms.
    Yu Y; Perdikaris P; Karniadakis GE
    J Comput Phys; 2016 Oct; 323():219-242. PubMed ID: 29104310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A fractional derivative model to describe arterial viscoelasticity.
    Craiem D; Armentano RL
    Biorheology; 2007; 44(4):251-63. PubMed ID: 18094449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of systemic arterial mechanical properties from infancy to adulthood interpreted by four-element windkessel models.
    Burattini R; Di Salvia PO
    J Appl Physiol (1985); 2007 Jul; 103(1):66-79. PubMed ID: 17303709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impedance of arterial system simulated by viscoelastic t tubes terminated in windkessels.
    Liu ZR; Shen F; Yin FC
    Am J Physiol; 1989 Apr; 256(4 Pt 2):H1087-99. PubMed ID: 2705551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of an Experimental and Digital Cardiovascular Arterial Model for Transient Hemodynamic and Postural Change Studies: "A Preliminary Framework Analysis".
    Hewlin RL; Kizito JP
    Cardiovasc Eng Technol; 2018 Mar; 9(1):1-31. PubMed ID: 29124548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pulsatile flow of non-Newtonian blood fluid inside stenosed arteries: Investigating the effects of viscoelastic and elastic walls, arteriosclerosis, and polycythemia diseases.
    Nejad AA; Talebi Z; Cheraghali D; Shahbani-Zahiri A; Norouzi M
    Comput Methods Programs Biomed; 2018 Feb; 154():109-122. PubMed ID: 29249336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A viscoelastic nonlinear compressible material model of lung parenchyma - Experiments and numerical identification.
    Birzle AM; Wall WA
    J Mech Behav Biomed Mater; 2019 Jun; 94():164-175. PubMed ID: 30897504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noninvasive method for determination of arterial compliance using Doppler echocardiography and subclavian pulse tracings. Validation and clinical application of a physiological model of the circulation.
    Marcus RH; Korcarz C; McCray G; Neumann A; Murphy M; Borow K; Weinert L; Bednarz J; Gretler DD; Spencer KT
    Circulation; 1994 Jun; 89(6):2688-99. PubMed ID: 8205683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.