These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 30441588)

  • 1. Improved Application of Sparse Representation Classifier in fMRI-based Brain State Decoding.
    Guo Z; Long Z; Zhang J; Xia M; Yao L
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5523-5526. PubMed ID: 30441588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brain State Decoding Based on fMRI Using Semisupervised Sparse Representation Classifications.
    Zhang J; Zhang C; Yao L; Zhao X; Long Z
    Comput Intell Neurosci; 2018; 2018():3956536. PubMed ID: 29849545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-step paretial least square regression classifiers in brain-state decoding using functional magnetic resonance imaging.
    Long Z; Wang Y; Liu X; Yao L
    PLoS One; 2019; 14(4):e0214937. PubMed ID: 30970029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiclass fMRI data decoding and visualization using supervised self-organizing maps.
    Hausfeld L; Valente G; Formisano E
    Neuroimage; 2014 Aug; 96():54-66. PubMed ID: 24531045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multivariate detrending of fMRI signal drifts for real-time multiclass pattern classification.
    Lee D; Jang C; Park HJ
    Neuroimage; 2015 Mar; 108():203-13. PubMed ID: 25573669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Euler Elastica Regularized Logistic Regression for Whole-Brain Decoding of fMRI Data.
    Zhang C; Yao L; Song S; Wen X; Zhao X; Long Z
    IEEE Trans Biomed Eng; 2018 Jul; 65(7):1639-1653. PubMed ID: 28952931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decoding and mapping task states of the human brain via deep learning.
    Wang X; Liang X; Jiang Z; Nguchu BA; Zhou Y; Wang Y; Wang H; Li Y; Zhu Y; Wu F; Gao JH; Qiu B
    Hum Brain Mapp; 2020 Apr; 41(6):1505-1519. PubMed ID: 31816152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved sparse decomposition based on a smoothed L0 norm using a Laplacian kernel to select features from fMRI data.
    Zhang C; Song S; Wen X; Yao L; Long Z
    J Neurosci Methods; 2015 Apr; 245():15-24. PubMed ID: 25681758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decoding the individual finger movements from single-trial functional magnetic resonance imaging recordings of human brain activity.
    Shen G; Zhang J; Wang M; Lei D; Yang G; Zhang S; Du X
    Eur J Neurosci; 2014 Jun; 39(12):2071-82. PubMed ID: 24661456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of spatial resolution on decoding accuracy in fMRI multivariate pattern analysis.
    Gardumi A; Ivanov D; Hausfeld L; Valente G; Formisano E; Uludağ K
    Neuroimage; 2016 May; 132():32-42. PubMed ID: 26899782
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of spatial smoothing on fMRI decoding of columnar-level organization with linear support vector machine.
    Misaki M; Luh WM; Bandettini PA
    J Neurosci Methods; 2013 Jan; 212(2):355-61. PubMed ID: 23174092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative modeling of the neural representation of objects: how semantic feature norms can account for fMRI activation.
    Chang KM; Mitchell T; Just MA
    Neuroimage; 2011 May; 56(2):716-27. PubMed ID: 20451625
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decoding of visual activity patterns from fMRI responses using multivariate pattern analyses and convolutional neural network.
    Zafar R; Kamel N; Naufal M; Malik AS; Dass SC; Ahmad RF; Abdullah JM; Reza F
    J Integr Neurosci; 2017; 16(3):275-289. PubMed ID: 28891512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A study of decoding human brain activities from simultaneous data of EEG and fMRI using MVPA.
    Zafar R; Kamel N; Naufal M; Malik AS; Dass SC; Ahmad RF; Abdullah JM; Reza F
    Australas Phys Eng Sci Med; 2018 Sep; 41(3):633-645. PubMed ID: 29948968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decoding natural images from evoked brain activities using encoding models with invertible mapping.
    Li C; Xu J; Liu B
    Neural Netw; 2018 Sep; 105():227-235. PubMed ID: 29870930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial scale and distribution of neurovascular signals underlying decoding of orientation and eye of origin from fMRI data.
    Larsson J; Harrison C; Jackson J; Oh SM; Zeringyte V
    J Neurophysiol; 2017 Feb; 117(2):818-835. PubMed ID: 27903637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimizing multivariate pattern classification in rapid event-related designs.
    Stehr DA; Garcia JO; Pyles JA; Grossman ED
    J Neurosci Methods; 2023 Mar; 387():109808. PubMed ID: 36738848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Principal feature analysis: a multivariate feature selection method for fMRI data.
    Wang L; Lei Y; Zeng Y; Tong L; Yan B
    Comput Math Methods Med; 2013; 2013():645921. PubMed ID: 24171045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Classifier ensembles for fMRI data analysis: an experiment.
    Kuncheva LI; Rodríguez JJ
    Magn Reson Imaging; 2010 May; 28(4):583-93. PubMed ID: 20096528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An empirical comparison of different LDA methods in fMRI-based brain states decoding.
    Xia M; Song S; Yao L; Long Z
    Biomed Mater Eng; 2015; 26 Suppl 1():S1185-92. PubMed ID: 26405876
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.