These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 30441602)

  • 1. Applying Entropy to Human Center of Foot Pressure Data to Assess Attention Investment in Balance Control.
    Franco C; Fleury A; Diot B; Vuillerme N
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5586-5589. PubMed ID: 30441602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Postural effects of the scaled display of visual foot center of pressure feedback under different somatosensory conditions at the foot and the ankle.
    Vuillerme N; Bertrand R; Pinsault N
    Arch Phys Med Rehabil; 2008 Oct; 89(10):2034-6. PubMed ID: 18929035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regularity of center-of-pressure trajectories depends on the amount of attention invested in postural control.
    Donker SF; Roerdink M; Greven AJ; Beek PJ
    Exp Brain Res; 2007 Jul; 181(1):1-11. PubMed ID: 17401553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Center-of-pressure regularity as a marker for attentional investment in postural control: a comparison between sitting and standing postures.
    Roerdink M; Hlavackova P; Vuillerme N
    Hum Mov Sci; 2011 Apr; 30(2):203-12. PubMed ID: 20542347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intrinsic foot muscles act to stabilise the foot when greater fluctuations in centre of pressure movement result from increased postural balance challenge.
    Ferrari E; Cooper G; Reeves ND; Hodson-Tole EF
    Gait Posture; 2020 Jun; 79():229-233. PubMed ID: 32446178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of light finger touch on the regularity of center-of-pressure fluctuations during quiet bipedal and single-leg postural tasks.
    Lara JR; da Silva CR; de Lima FF; da Silva MC; Kohn AF; Elias LA; Magalhães FH
    Gait Posture; 2022 Jul; 96():203-209. PubMed ID: 35696826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decreasing internal focus of attention improves postural control during quiet standing in young healthy adults.
    Nafati G; Vuillerme N
    Res Q Exerc Sport; 2011 Dec; 82(4):634-43. PubMed ID: 22276405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regularity of Center of Pressure Trajectories in Expert Gymnasts during Bipedal Closed-Eyes Quiet Standing.
    Isableu B; Hlavackova P; Diot B; Vuillerme N
    Front Hum Neurosci; 2017; 11():317. PubMed ID: 28676748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationship of multiscale entropy to task difficulty and sway velocity in healthy young adults.
    Lubetzky AV; Price R; Ciol MA; Kelly VE; McCoy SW
    Somatosens Mot Res; 2015; 32(4):211-8. PubMed ID: 26370065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Re-weighting of somatosensory inputs from the foot and the ankle for controlling posture during quiet standing following trunk extensor muscles fatigue.
    Vuillerme N; Pinsault N
    Exp Brain Res; 2007 Nov; 183(3):323-7. PubMed ID: 17643234
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sway regularity and sway activity in older adults' upright stance are differentially affected by dual task.
    Drozdova-Statkevičienė M; Česnaitienė VJ; Pukėnas K; Levin O; Masiulis N
    Neurosci Lett; 2018 Feb; 666():153-157. PubMed ID: 29288047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of plantar-flexor muscle fatigue on the magnitude and regularity of center-of-pressure fluctuations.
    Roerdink M; Hlavackova P; Vuillerme N
    Exp Brain Res; 2011 Jul; 212(3):471-6. PubMed ID: 21656214
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Do somatosensory conditions from the foot and ankle affect postural responses to plantar-flexor muscles fatigue during bipedal quiet stance?
    Hlavackova P; Vuillerme N
    Gait Posture; 2012 May; 36(1):16-9. PubMed ID: 22465704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential integration of kinaesthetic signals to postural control.
    Isableu B; Vuillerme N
    Exp Brain Res; 2006 Oct; 174(4):763-8. PubMed ID: 17016738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Standing balance of professional ballet dancers and non-dancers under different conditions.
    Janura M; Procházková M; Svoboda Z; Bizovská L; Jandová S; Konečný P
    PLoS One; 2019; 14(10):e0224145. PubMed ID: 31639174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of postural stability based on a force plate and inertial sensor during static balance measurements.
    Lee CH; Sun TL
    J Physiol Anthropol; 2018 Dec; 37(1):27. PubMed ID: 30545421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Postural adaptation to unilateral hip muscle fatigue during human bipedal standing.
    Vuillerme N; Sporbert C; Pinsault N
    Gait Posture; 2009 Jul; 30(1):122-5. PubMed ID: 19403311
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of plantar cutaneous sensation in unperturbed stance.
    Meyer PF; Oddsson LI; De Luca CJ
    Exp Brain Res; 2004 Jun; 156(4):505-12. PubMed ID: 14968274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Standing balance in preschoolers using nonlinear dynamics and sway density curve analysis.
    Lobo da Costa PH; Verbecque E; Hallemans A; Vieira MF
    J Biomech; 2019 Jan; 82():96-102. PubMed ID: 30381154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Does the type of visual feedback information change the control of standing balance?
    Dos Anjos F; Lemos T; Imbiriba LA
    Eur J Appl Physiol; 2016 Sep; 116(9):1771-9. PubMed ID: 27431210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.