These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
272 related articles for article (PubMed ID: 30441688)
1. Introducing a Novel Layer in Convolutional Neural Network for Automatic Identification of Diabetic Retinopathy. Khojasteh P; Aliahmad B; Arjunan SP; Kumar DK Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5938-5941. PubMed ID: 30441688 [TBL] [Abstract][Full Text] [Related]
2. Fundus images analysis using deep features for detection of exudates, hemorrhages and microaneurysms. Khojasteh P; Aliahmad B; Kumar DK BMC Ophthalmol; 2018 Nov; 18(1):288. PubMed ID: 30400869 [TBL] [Abstract][Full Text] [Related]
3. Detection of Fundus Lesions through a Convolutional Neural Network in Patients with Diabetic Retinopathy. Santos C; de Aguiar MS; Welfer D; Belloni BM Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():2692-2695. PubMed ID: 34891806 [TBL] [Abstract][Full Text] [Related]
5. Deep Convolutional Neural Network-Based Early Automated Detection of Diabetic Retinopathy Using Fundus Image. Xu K; Feng D; Mi H Molecules; 2017 Nov; 22(12):. PubMed ID: 29168750 [TBL] [Abstract][Full Text] [Related]
6. Fusion of Deep Convolutional Neural Networks for Microaneurysm Detection in Color Fundus Images. Harangi B; Toth J; Hajdu A Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():3705-3708. PubMed ID: 30441176 [TBL] [Abstract][Full Text] [Related]
7. Detection of exudates in fundus photographs using deep neural networks and anatomical landmark detection fusion. Prentašić P; Lončarić S Comput Methods Programs Biomed; 2016 Dec; 137():281-292. PubMed ID: 28110732 [TBL] [Abstract][Full Text] [Related]
8. Deep Bayesian baseline for segmenting diabetic retinopathy lesions: Advances and challenges. Garifullin A; Lensu L; Uusitalo H Comput Biol Med; 2021 Sep; 136():104725. PubMed ID: 34399196 [TBL] [Abstract][Full Text] [Related]
9. Automated detection of diabetic retinopathy using custom convolutional neural network. Albahli S; Ahmad Hassan Yar GN J Xray Sci Technol; 2022; 30(2):275-291. PubMed ID: 35001904 [TBL] [Abstract][Full Text] [Related]
10. Exudate detection for diabetic retinopathy with convolutional neural networks. Shuang Yu ; Di Xiao ; Kanagasingam Y Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1744-1747. PubMed ID: 29060224 [TBL] [Abstract][Full Text] [Related]
11. Referable diabetic retinopathy identification from eye fundus images with weighted path for convolutional neural network. Liu YP; Li Z; Xu C; Li J; Liang R Artif Intell Med; 2019 Aug; 99():101694. PubMed ID: 31606108 [TBL] [Abstract][Full Text] [Related]
12. EAD-Net: A Novel Lesion Segmentation Method in Diabetic Retinopathy Using Neural Networks. Wan C; Chen Y; Li H; Zheng B; Chen N; Yang W; Wang C; Li Y Dis Markers; 2021; 2021():6482665. PubMed ID: 34512815 [TBL] [Abstract][Full Text] [Related]
13. Diabetic retinopathy detection through convolutional neural networks with synaptic metaplasticity. Vives-Boix V; Ruiz-Fernández D Comput Methods Programs Biomed; 2021 Jul; 206():106094. PubMed ID: 34010801 [TBL] [Abstract][Full Text] [Related]
14. Detection of microaneurysms and hemorrhages based on improved Hessian matrix. Yang L; Yan S; Xie Y Int J Comput Assist Radiol Surg; 2021 Jun; 16(6):883-894. PubMed ID: 33978894 [TBL] [Abstract][Full Text] [Related]
15. Development of automatic retinal vessel segmentation method in fundus images via convolutional neural networks. Joonyoung Song ; Boreom Lee Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():681-684. PubMed ID: 29059964 [TBL] [Abstract][Full Text] [Related]
16. Automatic detection of diabetic retinopathy using an artificial neural network: a screening tool. Gardner GG; Keating D; Williamson TH; Elliott AT Br J Ophthalmol; 1996 Nov; 80(11):940-4. PubMed ID: 8976718 [TBL] [Abstract][Full Text] [Related]
17. An Intelligent Model for Blood Vessel Segmentation in Diagnosing DR Using CNN. Sangeethaa SN; Uma Maheswari P J Med Syst; 2018 Aug; 42(10):175. PubMed ID: 30109508 [TBL] [Abstract][Full Text] [Related]
18. Exudates Segmentation using Fully Convolutional Neural Network and Auxiliary Codebook. Chudzik P; Al-Diri B; Caliva F; Ometto G; Hunter A Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():770-773. PubMed ID: 30440508 [TBL] [Abstract][Full Text] [Related]
19. Deep Learning Approach for Automatic Microaneurysms Detection. Mateen M; Malik TS; Hayat S; Hameed M; Sun S; Wen J Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062506 [TBL] [Abstract][Full Text] [Related]
20. Microaneurysm detection in fundus images using a two-step convolutional neural network. Eftekhari N; Pourreza HR; Masoudi M; Ghiasi-Shirazi K; Saeedi E Biomed Eng Online; 2019 May; 18(1):67. PubMed ID: 31142335 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]