These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 30441689)

  • 1. A Unified Optic Nerve Head and Optic Cup Segmentation Using Unsupervised Neural Networks for Glaucoma Screening.
    Ghassabi Z; Shanbehzadeh J; Nouri-Mahdavi K
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5942-5945. PubMed ID: 30441689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fully automated method for glaucoma screening using robust optic nerve head detection and unsupervised segmentation based cup-to-disc ratio computation in retinal fundus images.
    Mvoulana A; Kachouri R; Akil M
    Comput Med Imaging Graph; 2019 Oct; 77():101643. PubMed ID: 31541937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fully Convolutional Networks for Monocular Retinal Depth Estimation and Optic Disc-Cup Segmentation.
    Shankaranarayana SM; Ram K; Mitra K; Sivaprakasam M
    IEEE J Biomed Health Inform; 2019 Jul; 23(4):1417-1426. PubMed ID: 30762573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superpixel classification based optic disc and optic cup segmentation for glaucoma screening.
    Cheng J; Liu J; Xu Y; Yin F; Wong DW; Tan NM; Tao D; Cheng CY; Aung T; Wong TY
    IEEE Trans Med Imaging; 2013 Jun; 32(6):1019-32. PubMed ID: 23434609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optic disc and optic cup segmentation based on anatomy guided cascade network.
    Bian X; Luo X; Wang C; Liu W; Lin X
    Comput Methods Programs Biomed; 2020 Dec; 197():105717. PubMed ID: 32957060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct Cup-to-Disc Ratio Estimation for Glaucoma Screening via Semi-Supervised Learning.
    Zhao R; Chen X; Liu X; Chen Z; Guo F; Li S
    IEEE J Biomed Health Inform; 2020 Apr; 24(4):1104-1113. PubMed ID: 31403451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optic cup segmentation from fundus images for glaucoma diagnosis.
    Hu M; Zhu C; Li X; Xu Y
    Bioengineered; 2017 Jan; 8(1):21-28. PubMed ID: 27764542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Joint optic disc and optic cup segmentation based on boundary prior and adversarial learning.
    Luo L; Xue D; Pan F; Feng X
    Int J Comput Assist Radiol Surg; 2021 Jun; 16(6):905-914. PubMed ID: 33963969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A multi-scale convolutional neural network with context for joint segmentation of optic disc and cup.
    Yuan X; Zhou L; Yu S; Li M; Wang X; Zheng X
    Artif Intell Med; 2021 Mar; 113():102035. PubMed ID: 33685591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glaucoma diagnostics.
    Geimer SA
    Acta Ophthalmol; 2013 Feb; 91 Thesis 1():1-32. PubMed ID: 23384049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated determination of cup-to-disc ratio for classification of glaucomatous and normal eyes on stereo retinal fundus images.
    Muramatsu C; Nakagawa T; Sawada A; Hatanaka Y; Yamamoto T; Fujita H
    J Biomed Opt; 2011 Sep; 16(9):096009. PubMed ID: 21950923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Joint optic disc and cup segmentation based on residual multi-scale fully convolutional neural network].
    Yuan X; Zheng X; Ji B; Li M; Li B
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2020 Oct; 37(5):875-884. PubMed ID: 33140612
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ECSD-Net: A joint optic disc and cup segmentation and glaucoma classification network based on unsupervised domain adaptation.
    Liu B; Pan D; Shuai Z; Song H
    Comput Methods Programs Biomed; 2022 Jan; 213():106530. PubMed ID: 34813984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Joint optic disc and cup boundary extraction from monocular fundus images.
    Chakravarty A; Sivaswamy J
    Comput Methods Programs Biomed; 2017 Aug; 147():51-61. PubMed ID: 28734530
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sector-based optic cup segmentation with intensity and blood vessel priors.
    Yin F; Liu J; Wong DW; Tan NM; Cheng J; Cheng CY; Tham YC; Wong TY
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1454-7. PubMed ID: 23366175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optic Disc and Cup Image Segmentation Utilizing Contour-Based Transformation and Sequence Labeling Networks.
    Xie Z; Ling T; Yang Y; Shu R; Liu BJ
    J Med Syst; 2020 Mar; 44(5):96. PubMed ID: 32193703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unsupervised Domain Adaptation with Shape Constraint and Triple Attention for Joint Optic Disc and Cup Segmentation.
    Zhang F; Li S; Deng J
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433345
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Patch-Based Output Space Adversarial Learning for Joint Optic Disc and Cup Segmentation.
    Wang S; Yu L; Yang X; Fu CW; Heng PA
    IEEE Trans Med Imaging; 2019 Nov; 38(11):2485-2495. PubMed ID: 30794170
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D augmented fundus images for identifying glaucoma via transferred convolutional neural networks.
    Wang P; Yuan M; He Y; Sun J
    Int Ophthalmol; 2021 Jun; 41(6):2065-2072. PubMed ID: 33655390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Joint Optic Disc and Cup Segmentation Based on Multi-Label Deep Network and Polar Transformation.
    Fu H; Cheng J; Xu Y; Wong DWK; Liu J; Cao X
    IEEE Trans Med Imaging; 2018 Jul; 37(7):1597-1605. PubMed ID: 29969410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.