These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 30441689)
21. Optic disk and cup segmentation from monocular color retinal images for glaucoma assessment. Joshi GD; Sivaswamy J; Krishnadas SR IEEE Trans Med Imaging; 2011 Jun; 30(6):1192-205. PubMed ID: 21536531 [TBL] [Abstract][Full Text] [Related]
22. Joint optic disc and cup segmentation based on densely connected depthwise separable convolution deep network. Liu B; Pan D; Song H BMC Med Imaging; 2021 Jan; 21(1):14. PubMed ID: 33509106 [TBL] [Abstract][Full Text] [Related]
23. JointRCNN: A Region-Based Convolutional Neural Network for Optic Disc and Cup Segmentation. Jiang Y; Duan L; Cheng J; Gu Z; Xia H; Fu H; Li C; Liu J IEEE Trans Biomed Eng; 2020 Feb; 67(2):335-343. PubMed ID: 31021760 [TBL] [Abstract][Full Text] [Related]
24. Optic Disc and Cup Segmentation with Blood Vessel Removal from Fundus Images for Glaucoma Detection. Jiang Y; Xia H; Xu Y; Cheng J; Fu H; Duan L; Meng Z; Liu J Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():862-865. PubMed ID: 30440527 [TBL] [Abstract][Full Text] [Related]
25. A Precise Method to Evaluate 360 Degree Measures of Optic Cup and Disc Morphology in an African American Cohort and Its Genetic Applications. Addis V; Chen M; Zorger R; Salowe R; Daniel E; Lee R; Pistilli M; Gao J; Maguire MG; Chan L; Gudiseva HV; Zenebe-Gete S; Merriam S; Smith EJ; Martin R; Parker Ostroff C; Gee JC; Cui QN; Miller-Ellis E; O'Brien JM; Sankar PS Genes (Basel); 2021 Dec; 12(12):. PubMed ID: 34946910 [TBL] [Abstract][Full Text] [Related]
26. Comparison of quantitative imaging devices and subjective optic nerve head assessment by general ophthalmologists to differentiate normal from glaucomatous eyes. Vessani RM; Moritz R; Batis L; Zagui RB; Bernardoni S; Susanna R J Glaucoma; 2009 Mar; 18(3):253-61. PubMed ID: 19295383 [TBL] [Abstract][Full Text] [Related]
27. Regression analysis of ranked segment parameters for optic nerve head classification: a pilot study. Cubbidge RP; Hosking SL; Hilton EJ; Gibson JM Ophthalmic Physiol Opt; 2007 Mar; 27(2):194-200. PubMed ID: 17324210 [TBL] [Abstract][Full Text] [Related]
28. Glaucoma detection using novel optic disc localization, hybrid feature set and classification techniques. Akram MU; Tariq A; Khalid S; Javed MY; Abbas S; Yasin UU Australas Phys Eng Sci Med; 2015 Dec; 38(4):643-55. PubMed ID: 26399880 [TBL] [Abstract][Full Text] [Related]
29. [Optic cup and disc segmentation model based on linear attention and dual attention]. Lan Z; Xie J; Guo Y; Zhang Z; Sun B Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2023 Oct; 40(5):920-927. PubMed ID: 37879921 [TBL] [Abstract][Full Text] [Related]
30. An adaptive threshold based image processing technique for improved glaucoma detection and classification. Issac A; Partha Sarathi M; Dutta MK Comput Methods Programs Biomed; 2015 Nov; 122(2):229-44. PubMed ID: 26321351 [TBL] [Abstract][Full Text] [Related]
31. Joint optic disc and cup segmentation using semi-supervised conditional GANs. Liu S; Hong J; Lu X; Jia X; Lin Z; Zhou Y; Liu Y; Zhang H Comput Biol Med; 2019 Dec; 115():103485. PubMed ID: 31630029 [TBL] [Abstract][Full Text] [Related]
32. A residual connection enabled deep neural network model for optic disk and optic cup segmentation for glaucoma diagnosis. Aurangzeb K Sci Prog; 2023; 106(3):368504231201329. PubMed ID: 37743660 [TBL] [Abstract][Full Text] [Related]
33. Segmentation of optic disc and optic cup in retinal fundus images using shape regression. Sedai S; Roy PK; Mahapatra D; Garnavi R Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3260-3264. PubMed ID: 28269003 [TBL] [Abstract][Full Text] [Related]
34. An Efficient Hierarchical Optic Disc and Cup Segmentation Network Combined with Multi-task Learning and Adversarial Learning. Wang Y; Yu X; Wu C J Digit Imaging; 2022 Jun; 35(3):638-653. PubMed ID: 35212860 [TBL] [Abstract][Full Text] [Related]
35. Automatic glaucoma screening using optic nerve head measurements and random forest classifier on fundus images. Bouacheria M; Cherfa Y; Cherfa A; Belkhamsa N Phys Eng Sci Med; 2020 Dec; 43(4):1265-1277. PubMed ID: 32986219 [TBL] [Abstract][Full Text] [Related]
36. A novel lightweight deep learning approach for simultaneous optic cup and optic disc segmentation in glaucoma detection. Song Y; Zhang W; Zhang Y Math Biosci Eng; 2024 Mar; 21(4):5092-5117. PubMed ID: 38872528 [TBL] [Abstract][Full Text] [Related]
37. WGAN domain adaptation for the joint optic disc-and-cup segmentation in fundus images. Kadambi S; Wang Z; Xing E Int J Comput Assist Radiol Surg; 2020 Jul; 15(7):1205-1213. PubMed ID: 32445127 [TBL] [Abstract][Full Text] [Related]
38. Superpixel classification based optic cup segmentation. Cheng J; Liu J; Tao D; Yin F; Wong DW; Xu Y; Wong TY Med Image Comput Comput Assist Interv; 2013; 16(Pt 3):421-8. PubMed ID: 24505789 [TBL] [Abstract][Full Text] [Related]
39. Multi-indices quantification of optic nerve head in fundus image via multitask collaborative learning. Zhao R; Li S Med Image Anal; 2020 Feb; 60():101593. PubMed ID: 31731092 [TBL] [Abstract][Full Text] [Related]
40. An ensembling approach for optic cup detection based on spatial heuristic analysis in retinal fundus images. Wong DW; Liu J; Tan NM; Fengshou Y; Cheung C; Baskaran M; Aung T; Wong TY Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1426-9. PubMed ID: 23366168 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]