These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 30441689)
41. Automated glaucoma screening method based on image segmentation and feature extraction. Guo F; Li W; Tang J; Zou B; Fan Z Med Biol Eng Comput; 2020 Oct; 58(10):2567-2586. PubMed ID: 32820355 [TBL] [Abstract][Full Text] [Related]
42. Detection of structural damage from glaucoma with confocal laser image analysis. Uchida H; Brigatti L; Caprioli J Invest Ophthalmol Vis Sci; 1996 Nov; 37(12):2393-401. PubMed ID: 8933756 [TBL] [Abstract][Full Text] [Related]
43. State-of-the-Art Techniques in Optic Cup and Disc Localization for Glaucoma Diagnosis: Research Results and Issues. Balasubramanian K; Ananthamoorthy NP Crit Rev Biomed Eng; 2020; 48(1):63-83. PubMed ID: 32749119 [TBL] [Abstract][Full Text] [Related]
44. Accurate, fast, data efficient and interpretable glaucoma diagnosis with automated spatial analysis of the whole cup to disc profile. MacCormick IJC; Williams BM; Zheng Y; Li K; Al-Bander B; Czanner S; Cheeseman R; Willoughby CE; Brown EN; Spaeth GL; Czanner G PLoS One; 2019; 14(1):e0209409. PubMed ID: 30629635 [TBL] [Abstract][Full Text] [Related]
45. Movement of retinal vessels toward the optic nerve head after increasing intraocular pressure in monkey eyes with experimental glaucoma. Kuroda A; Enomoto N; Ishida K; Shimazawa M; Noguchi T; Horai N; Onoe H; Hara H; Tomita G Exp Eye Res; 2017 Sep; 162():110-115. PubMed ID: 28739100 [TBL] [Abstract][Full Text] [Related]
47. Segmentation of Optic Disc and Cup Using Modified Recurrent Neural Network. Surendiran J; Theetchenya S; Benson Mansingh PM; Sekar G; Dhipa M; Yuvaraj N; Arulkarthick VJ; Suresh C; Sriram A; Srihari K; Alene A Biomed Res Int; 2022; 2022():6799184. PubMed ID: 35547359 [TBL] [Abstract][Full Text] [Related]
48. Efficient optic cup detection from intra-image learning with retinal structure priors. Xu Y; Liu J; Lin S; Xu D; Cheung CY; Aung T; Wong TY Med Image Comput Comput Assist Interv; 2012; 15(Pt 1):58-65. PubMed ID: 23285535 [TBL] [Abstract][Full Text] [Related]
49. Incorporation of gradient vector flow field in a multimodal graph-theoretic approach for segmenting the internal limiting membrane from glaucomatous optic nerve head-centered SD-OCT volumes. Miri MS; Robles VA; Abrà moff MD; Kwon YH; Garvin MK Comput Med Imaging Graph; 2017 Jan; 55():87-94. PubMed ID: 27507325 [TBL] [Abstract][Full Text] [Related]
50. Automated segmentation of the optic disc from stereo color photographs using physiologically plausible features. Abrà moff MD; Alward WL; Greenlee EC; Shuba L; Kim CY; Fingert JH; Kwon YH Invest Ophthalmol Vis Sci; 2007 Apr; 48(4):1665-73. PubMed ID: 17389498 [TBL] [Abstract][Full Text] [Related]
51. Comparing glaucomatous optic neuropathy in primary open angle and chronic primary angle closure glaucoma eyes by optical coherence tomography. Sihota R; Sony P; Gupta V; Dada T; Singh R Ophthalmic Physiol Opt; 2005 Sep; 25(5):408-15. PubMed ID: 16101946 [TBL] [Abstract][Full Text] [Related]
52. Factors affecting the sensitivity and specificity of the Heidelberg Retina Tomograph parameters to glaucomatous progression in disc photographs. Saarela V; Falck A; Airaksinen PJ; Tuulonen A Acta Ophthalmol; 2012 Mar; 90(2):132-8. PubMed ID: 20346079 [TBL] [Abstract][Full Text] [Related]
53. Automated analysis of normal and glaucomatous optic nerve head topography images. Swindale NV; Stjepanovic G; Chin A; Mikelberg FS Invest Ophthalmol Vis Sci; 2000 Jun; 41(7):1730-42. PubMed ID: 10845593 [TBL] [Abstract][Full Text] [Related]
54. Undilated versus dilated monoscopic smartphone-based fundus photography for optic nerve head evaluation. Wintergerst MWM; Brinkmann CK; Holz FG; Finger RP Sci Rep; 2018 Jul; 8(1):10228. PubMed ID: 29980724 [TBL] [Abstract][Full Text] [Related]
55. A Retrospective Comparison of Deep Learning to Manual Annotations for Optic Disc and Optic Cup Segmentation in Fundus Photographs. Fu H; Li F; Xu Y; Liao J; Xiong J; Shen J; Liu J; Zhang X; Transl Vis Sci Technol; 2020 Jun; 9(2):33. PubMed ID: 32832206 [TBL] [Abstract][Full Text] [Related]
56. An automated and robust image processing algorithm for glaucoma diagnosis from fundus images using novel blood vessel tracking and bend point detection. M S; Issac A; Dutta MK Int J Med Inform; 2018 Feb; 110():52-70. PubMed ID: 29331255 [TBL] [Abstract][Full Text] [Related]
57. Morphological features and important parameters of large optic discs for diagnosing glaucoma. Okimoto S; Yamashita K; Shibata T; Kiuchi Y PLoS One; 2015; 10(3):e0118920. PubMed ID: 25798580 [TBL] [Abstract][Full Text] [Related]
58. TriLA: Triple-Level Alignment Based Unsupervised Domain Adaptation for Joint Segmentation of Optic Disc and Optic Cup. Chen Z; Pan Y; Ye Y; Wang Z; Xia Y IEEE J Biomed Health Inform; 2024 Sep; 28(9):5497-5508. PubMed ID: 38805331 [TBL] [Abstract][Full Text] [Related]
59. Clinical validation of Singh D; Gunasekaran S; Hada M; Gogia V Indian J Ophthalmol; 2019 Jul; 67(7):1089-1094. PubMed ID: 31238418 [TBL] [Abstract][Full Text] [Related]
60. Optic Disc and Cup Segmentation in Retinal Images for Glaucoma Diagnosis by Locally Statistical Active Contour Model with Structure Prior. Zhou W; Yi Y; Gao Y; Dai J Comput Math Methods Med; 2019; 2019():8973287. PubMed ID: 31827591 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]