These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 30441692)

  • 1. Optic Disc Segmentation from Retinal Fundus Images via Deep Object Detection Networks.
    Sun X; Xu Y; Zhao W; You T; Liu J
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5954-5957. PubMed ID: 30441692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-stage framework for optic disc localization and glaucoma classification in retinal fundus images using deep learning.
    Bajwa MN; Malik MI; Siddiqui SA; Dengel A; Shafait F; Neumeier W; Ahmed S
    BMC Med Inform Decis Mak; 2019 Jul; 19(1):136. PubMed ID: 31315618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fully automated method for glaucoma screening using robust optic nerve head detection and unsupervised segmentation based cup-to-disc ratio computation in retinal fundus images.
    Mvoulana A; Kachouri R; Akil M
    Comput Med Imaging Graph; 2019 Oct; 77():101643. PubMed ID: 31541937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Efficient Hierarchical Optic Disc and Cup Segmentation Network Combined with Multi-task Learning and Adversarial Learning.
    Wang Y; Yu X; Wu C
    J Digit Imaging; 2022 Jun; 35(3):638-653. PubMed ID: 35212860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The region of interest localization for glaucoma analysis from retinal fundus image using deep learning.
    Mitra A; Banerjee PS; Roy S; Roy S; Setua SK
    Comput Methods Programs Biomed; 2018 Oct; 165():25-35. PubMed ID: 30337079
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optic Disc and Cup Segmentation with Blood Vessel Removal from Fundus Images for Glaucoma Detection.
    Jiang Y; Xia H; Xu Y; Cheng J; Fu H; Duan L; Meng Z; Liu J
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():862-865. PubMed ID: 30440527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel lightweight deep learning approach for simultaneous optic cup and optic disc segmentation in glaucoma detection.
    Song Y; Zhang W; Zhang Y
    Math Biosci Eng; 2024 Mar; 21(4):5092-5117. PubMed ID: 38872528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiresolution cascaded attention U-Net for localization and segmentation of optic disc and fovea in fundus images.
    Shalini R; Gopi VP
    Sci Rep; 2024 Oct; 14(1):23107. PubMed ID: 39367046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Joint optic disc and cup segmentation using semi-supervised conditional GANs.
    Liu S; Hong J; Lu X; Jia X; Lin Z; Zhou Y; Liu Y; Zhang H
    Comput Biol Med; 2019 Dec; 115():103485. PubMed ID: 31630029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optic Disc Boundary and Vessel Origin Segmentation of Fundus Images.
    Roychowdhury S; Koozekanani DD; Kuchinka SN; Parhi KK
    IEEE J Biomed Health Inform; 2016 Nov; 20(6):1562-1574. PubMed ID: 26316237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optic disc detection and segmentation using saliency mask in retinal fundus images.
    Zaaboub N; Sandid F; Douik A; Solaiman B
    Comput Biol Med; 2022 Nov; 150():106067. PubMed ID: 36150251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A location-to-segmentation strategy for automatic exudate segmentation in colour retinal fundus images.
    Liu Q; Zou B; Chen J; Ke W; Yue K; Chen Z; Zhao G
    Comput Med Imaging Graph; 2017 Jan; 55():78-86. PubMed ID: 27665058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Research on segmentation model of optic disc and optic cup in fundus.
    Chen N; Lv X
    BMC Ophthalmol; 2024 Jun; 24(1):273. PubMed ID: 38943095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic optic disc localization and segmentation in retinal images by a line operator and level sets.
    Ren F; Li W; Yang J; Geng H; Zhao D
    Technol Health Care; 2016 Apr; 24 Suppl 2():S767-76. PubMed ID: 27198460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Joint Optic Disc and Cup Segmentation Based on Multi-Label Deep Network and Polar Transformation.
    Fu H; Cheng J; Xu Y; Wong DWK; Liu J; Cao X
    IEEE Trans Med Imaging; 2018 Jul; 37(7):1597-1605. PubMed ID: 29969410
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Patch-Based Output Space Adversarial Learning for Joint Optic Disc and Cup Segmentation.
    Wang S; Yu L; Yang X; Fu CW; Heng PA
    IEEE Trans Med Imaging; 2019 Nov; 38(11):2485-2495. PubMed ID: 30794170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fully Convolutional Networks for Monocular Retinal Depth Estimation and Optic Disc-Cup Segmentation.
    Shankaranarayana SM; Ram K; Mitra K; Sivaprakasam M
    IEEE J Biomed Health Inform; 2019 Jul; 23(4):1417-1426. PubMed ID: 30762573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optic Disc and Cup Image Segmentation Utilizing Contour-Based Transformation and Sequence Labeling Networks.
    Xie Z; Ling T; Yang Y; Shu R; Liu BJ
    J Med Syst; 2020 Mar; 44(5):96. PubMed ID: 32193703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accurate and efficient optic disc detection and segmentation by a circular transformation.
    Lu S
    IEEE Trans Med Imaging; 2011 Dec; 30(12):2126-33. PubMed ID: 21843983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Joint optic disc and optic cup segmentation based on boundary prior and adversarial learning.
    Luo L; Xue D; Pan F; Feng X
    Int J Comput Assist Radiol Surg; 2021 Jun; 16(6):905-914. PubMed ID: 33963969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.