BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 30441694)

  • 1. Mechanisms of Bone-conducted Ultrasonic Perception Assessed by Measurements of Acoustic Fields in the Outer Ear Canal and Vibrations of the Tympanic Membrane.
    Nakagawa S; Ito K
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5962-5965. PubMed ID: 30441694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new approach to the study of impedance characteristics of tympanic membrane.
    Bogomolov AV; Dragan SP
    Dokl Biochem Biophys; 2015; 464():269-71. PubMed ID: 26518544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Outer ear canal sound pressure and bone vibration measurement in SSD and CHL patients using a transcutaneous bone conduction instrument.
    Ghoncheh M; Lilli G; Lenarz T; Maier H
    Hear Res; 2016 Oct; 340():161-168. PubMed ID: 26723102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Factors contributing to bone conduction: the outer ear.
    Stenfelt S; Wild T; Hato N; Goode RL
    J Acoust Soc Am; 2003 Feb; 113(2):902-13. PubMed ID: 12597184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An examination of the effects of broadband air-conduction masker on the speech intelligibility of speech-modulated bone-conduction ultrasound.
    Nishimura T; Okayasu T; Saito O; Shimokura R; Yamashita A; Yamanaka T; Hosoi H; Kitahara T
    Hear Res; 2014 Nov; 317():41-9. PubMed ID: 25285623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peripheral perception mechanism of ultrasonic hearing.
    Nishimura T; Okayasu T; Uratani Y; Fukuda F; Saito O; Hosoi H
    Hear Res; 2011 Jul; 277(1-2):176-83. PubMed ID: 21238563
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Vibrations of the human tympanic membrane measured with Laser Doppler Vibrometer].
    Szymański M; Rusinek R; Zadrozniak M; Warmiński J; Morshed K
    Otolaryngol Pol; 2009; 63(2):182-5. PubMed ID: 19681493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporal window of integration estimated by omission in bone-conducted ultrasound.
    Okayasu T; Nishimura T; Uratani Y; Yamashita A; Nakagawa S; Yamanaka T; Hosoi H; Kitahara T
    Neurosci Lett; 2019 Mar; 696():1-6. PubMed ID: 30476566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison between bone-conducted ultrasound and audible sound in speech recognition.
    Yamashita A; Nishimura T; Nagatani Y; Okayasu T; Koizumi T; Sakaguchi T; Hosoi H
    Acta Otolaryngol Suppl; 2009 Jun; (562):34-9. PubMed ID: 19848237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human ultrasonic hearing is induced by a direct ultrasonic stimulation of the cochlea.
    Okayasu T; Nishimura T; Yamashita A; Saito O; Fukuda F; Yanai S; Hosoi H
    Neurosci Lett; 2013 Feb; 539():71-6. PubMed ID: 23384569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessments of basic properties of distal-presented bone-conducted ultrasonic hearing.
    Ogino R; Otsuka S; Nakagawa S
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2198-2201. PubMed ID: 30440841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inner Ear Excitation in Normal and Postmastoidectomy Participants by Fluid Stimulation in the Absence of Air- and Bone-Conduction Mechanisms.
    Ronen O; Geal-Dor M; Kaufmann-Yehezkely M; Perez R; Chordekar S; Adelman C; Sohmer H
    J Am Acad Audiol; 2017 Feb; 28(2):152-160. PubMed ID: 28240982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finite element modelling of sound transmission from outer to inner ear.
    Areias B; Santos C; Natal Jorge RM; Gentil F; Parente MP
    Proc Inst Mech Eng H; 2016 Nov; 230(11):999-1007. PubMed ID: 27591576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maturation of the occlusion effect: a bone conduction auditory steady state response study in infants and adults with normal hearing.
    Small SA; Hu N
    Ear Hear; 2011; 32(6):708-19. PubMed ID: 21617531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Response of the human tympanic membrane to transient acoustic and mechanical stimuli: Preliminary results.
    Razavi P; Ravicz ME; Dobrev I; Cheng JT; Furlong C; Rosowski JJ
    Hear Res; 2016 Oct; 340():15-24. PubMed ID: 26880098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Establishment of a cochlear injury model using bone-conducted ultrasound irradiation in guinea pigs and investigation on peripheral coding and recognition of ultrasonic signals.
    Wang F; Cao C; Huang C; Li Q; Li T; Liu X; Zhang S; Ceng X; Wang C
    Cell Mol Biol (Noisy-le-grand); 2018 Sep; 64(12):2-10. PubMed ID: 30301494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of ability to discriminate frequency of bone-conducted ultrasound by mismatch fields.
    Yamashita A; Nishimura T; Nakagawa S; Sakaguchi T; Hosoi H
    Neurosci Lett; 2008 Jun; 438(2):260-2. PubMed ID: 18455304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The ABC's of impedance audiometry.
    Sheehy JL; Hughes RL
    Laryngoscope; 1974 Nov; 84(11):1935-49. PubMed ID: 4437243
    [No Abstract]   [Full Text] [Related]  

  • 19. Bone-conduction hearing and the occlusion effect in otosclerosis and normal controls.
    Tsai V; Ostroff J; Korman M; Chen JM
    Otol Neurotol; 2005 Nov; 26(6):1138-42. PubMed ID: 16272931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Duration-dependent growth of N1m for speech-modulated bone-conducted ultrasound.
    Okayasu T; Nishimura T; Yamashita A; Nakagawa S; Nagatani Y; Yanai S; Uratani Y; Hosoi H
    Neurosci Lett; 2011 May; 495(1):72-6. PubMed ID: 21439350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.