BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 30441694)

  • 21. Evaluation of prosodic and segmental change in speech-modulated bone-conducted ultrasound by mismatch fields.
    Okayasu T; Nishimura T; Nakagawa S; Yamashita A; Nagatani Y; Uratani Y; Yamanaka T; Hosoi H
    Neurosci Lett; 2014 Jan; 559():117-21. PubMed ID: 24316405
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Postmortem changes in ear canal resonance and tympanic membrane impedance in the human ear].
    Vitzthum HG; Vorwerk U; Scheinpflug L; Begall K
    Laryngorhinootologie; 1996 May; 75(5):270-4. PubMed ID: 8672209
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of a novel hearing-aid for the profoundly deaf using bone-conducted ultrasonic perception: evaluation of transposed modulation.
    Nakagawa S; Fujiyuki C; Okubo Y; Hotehama T; Kagomiya T
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():3574-7. PubMed ID: 24110502
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Residual inhibition of tinnitus induced by 30-kHz bone-conducted ultrasound.
    Koizumi T; Nishimura T; Yamashita A; Yamanaka T; Imamura T; Hosoi H
    Hear Res; 2014 Apr; 310():48-53. PubMed ID: 24530434
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Three-dimensional acoustic waves in the ear canal and their interaction with the tympanic membrane.
    Rabbitt RD; Holmes MH
    J Acoust Soc Am; 1988 Mar; 83(3):1064-80. PubMed ID: 3356812
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transient acceleration response of a bone-conducted ultrasonic pulse in living human head.
    Hotehama T; Nakagawa S
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2000-3. PubMed ID: 24110109
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Human middle ear transfer function measured by double laser interferometry system.
    Gan RZ; Wood MW; Dormer KJ
    Otol Neurotol; 2004 Jul; 25(4):423-35. PubMed ID: 15241216
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Effect of Ear Canal Orientation on Tympanic Membrane Motion and the Sound Field Near the Tympanic Membrane.
    Cheng JT; Ravicz M; Guignard J; Furlong C; Rosowski JJ
    J Assoc Res Otolaryngol; 2015 Aug; 16(4):413-32. PubMed ID: 25910607
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of stimulus duration for bone-conducted ultrasound on N1m in man.
    Nishimura T; Nakagawa S; Sakaguchi T; Hosoi H; Tonoike M
    Neurosci Lett; 2002 Jul; 327(2):119-22. PubMed ID: 12098650
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Correlation between ear canal resonance and tympanic membrane impedance in relation to age and body mass and postmortem changes].
    Vitzthum HG; Weimann S; Scheinpflug L; Vorwerk U; Begall K
    HNO; 1997 Dec; 45(12):976-82. PubMed ID: 9486378
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transmission of bone conducted sound - correlation between hearing perception and cochlear vibration.
    Eeg-Olofsson M; Stenfelt S; Taghavi H; Reinfeldt S; HÃ¥kansson B; Tengstrand T; Finizia C
    Hear Res; 2013 Dec; 306():11-20. PubMed ID: 24047594
    [TBL] [Abstract][Full Text] [Related]  

  • 32. How does prosthesis head size affect vibration transmission in ossiculoplasty?
    Bance M; Campos A; Wong L; Morris DP; van Wijhe R
    Otolaryngol Head Neck Surg; 2007 Jul; 137(1):70-3. PubMed ID: 17599568
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of interlateral time and intensity differences of distantly-presented bone-conducted ultrasound on lateralization
    Ishikawa H; Otsuka S; Nakagawa S
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3881-3884. PubMed ID: 33018848
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of bone-conduction mobile phones: assessment of hearing mechanisms by measuring psychological characteristics and acoustical properties in the outer ear canal.
    Nakagawa S; Hotehama T; Ito K; Inagaki T
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5427-5430. PubMed ID: 28269485
    [TBL] [Abstract][Full Text] [Related]  

  • 35. THE EFFECT OF SIMULTANEOUS LOADING OF THE TYMPANIC MEMBRANE OF THE EXTERNAL AUDITORY CANAL ON BONE CONDUCTION SENSITIVITY OF THE NORMAL EAR.
    ABU-JAUDEH CN
    Ann Otol Rhinol Laryngol; 1964 Dec; 73():934-47. PubMed ID: 14239537
    [No Abstract]   [Full Text] [Related]  

  • 36. Air- and Bone-Conducted Sources of Feedback With an Active Middle Ear Implant.
    Banakis Hartl RM; Easter JR; Alhussaini MA; Tollin DJ; Jenkins HA
    Ear Hear; 2019; 40(3):725-731. PubMed ID: 30199397
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of ear canal occlusion and static pressure difference on bone conduction thresholds: implications for mechanisms of bone conduction.
    Aazh H; Moore B; Peyvandi AA; Stenfelt S
    Int J Audiol; 2005 May; 44(5):302-6. PubMed ID: 16028793
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Directional hearing in the grass frog (Rana temporaria L.): I. Mechanical vibrations of tympanic membrane.
    Vlaming MS; Aertsen AM; Epping WJ
    Hear Res; 1984 May; 14(2):191-201. PubMed ID: 6611330
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Acoustic input impedance of the human ear.
    Fischler H; Hohenberger M; Frei EH; Rubinstein M; Kretzer D
    Acta Otolaryngol; 1966; 62(4):373-83. PubMed ID: 5956517
    [No Abstract]   [Full Text] [Related]  

  • 40. Nonlinearity in eardrum vibration as a function of frequency and sound pressure.
    Aerts JR; Dirckx JJ
    Hear Res; 2010 May; 263(1-2):26-32. PubMed ID: 20026266
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.