These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 30441768)

  • 1. Fast Phase-Only Positioning with Triple-Frequency GPS.
    Wang K; Chen P; Teunissen PJG
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30441768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-Epoch, Single-Frequency Multi-GNSS L5 RTK under High-Elevation Masking.
    Wang K; Chen P; Teunissen PJG
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30832343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Extended ADOP for Performance Evaluation of Single-Frequency Single-Epoch Positioning by BDS/GPS in Asia-Pacific Region.
    Liu X; Zhang S; Zhang Q; Yang W
    Sensors (Basel); 2017 Sep; 17(10):. PubMed ID: 28973977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving Ambiguity Resolution for Medium Baselines Using Combined GPS and BDS Dual/Triple-Frequency Observations.
    Gao W; Gao C; Pan S; Wang D; Deng J
    Sensors (Basel); 2015 Oct; 15(11):27525-42. PubMed ID: 26528977
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A performance improvement method for low-cost land vehicle GPS/MEMS-INS attitude determination.
    Cong L; Li E; Qin H; Ling KV; Xue R
    Sensors (Basel); 2015 Mar; 15(3):5722-46. PubMed ID: 25760057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Instantaneous Ambiguity Reinitialization and Fast Ambiguity Initialization for L1-L2 GPS Measurements.
    Bakuła M
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33050162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calibration of BeiDou Triple-Frequency Receiver-Related Pseudorange Biases and Their Application in BDS Precise Positioning and Ambiguity Resolution.
    Zheng F; Gong X; Lou Y; Gu S; Jing G; Shi C
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31405160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characteristics of BeiDou Navigation Satellite System (BDS) Code Observations for Different Receiver Types and Their Influence on Wide-Lane Ambiguity Resolution.
    Lu Y; Wang Z; Ji S; Chen W; Weng D
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30347744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Triple Checked Partial Ambiguity Resolution for GPS/BDS RTK Positioning.
    Lu L; Ma L; Liu W; Wu T; Chen B
    Sensors (Basel); 2019 Nov; 19(22):. PubMed ID: 31752237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Instantaneous Real-Time Kinematic Decimeter-Level Positioning with BeiDou Triple-Frequency Signals over Medium Baselines.
    He X; Zhang X; Tang L; Liu W
    Sensors (Basel); 2015 Dec; 16(1):. PubMed ID: 26703614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance Analysis of GPS/BDS Dual/Triple-Frequency Network RTK in Urban Areas: A Case Study in Hong Kong.
    Xu Y; Chen W
    Sensors (Basel); 2018 Jul; 18(8):. PubMed ID: 30050021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast Time Synchronization on Tens of Picoseconds Level Using Uncombined GNSS Carrier Phase of Zero/Short Baseline.
    Zhao Y; Zhou L; Feng W; Xu S
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32872294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Low-Cost, High-Precision Vehicle Navigation System for Deep Urban Multipath Environment Using TDCP Measurements.
    Kim J; Park M; Bae Y; Kim OJ; Kim D; Kim B; Kee C
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32517375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tightly Coupled Integration of GPS Ambiguity Fixed Precise Point Positioning and MEMS-INS through a Troposphere-Constrained Adaptive Kalman Filter.
    Han H; Xu T; Wang J
    Sensors (Basel); 2016 Jul; 16(7):. PubMed ID: 27399721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extra-Wide Lane Ambiguity Resolution and Validation for a Single Epoch Based on the Triple-Frequency BeiDou Navigation Satellite System.
    Deng J; Zhang A; Zhu N; Ke F
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32164295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Unified Form of Code Biases and Positioning Performance Analysis in Global Positioning System (GPS)/BeiDou Navigation Satellite System (BDS) Precise Point Positioning Using Real Triple-Frequency Data.
    Liu P; Qin H; Cong L
    Sensors (Basel); 2019 May; 19(11):. PubMed ID: 31151147
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A method of undifferenced ambiguity resolution for GPS+GLONASS precise point positioning.
    Yi W; Song W; Lou Y; Shi C; Yao Y
    Sci Rep; 2016 May; 6():26334. PubMed ID: 27222361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A New Real-Time Cycle Slip Detection and Repair Method under High Ionospheric Activity for a Triple-Frequency GPS/BDS Receiver.
    Liu W; Jin X; Wu M; Hu J; Wu Y
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29389879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Precise Point Positioning Using Triple GNSS Constellations in Various Modes.
    Afifi A; El-Rabbany A
    Sensors (Basel); 2016 May; 16(6):. PubMed ID: 27240376
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-Time PPP-RTK Performance Analysis Using Ionospheric Corrections from Multi-Scale Network Configurations.
    Psychas D; Verhagen S
    Sensors (Basel); 2020 May; 20(11):. PubMed ID: 32466386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.