BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 30441795)

  • 1. Chaotic Manifold Analysis of Four-Screw Extruders Based on Lagrangian Coherent Structures.
    Zhu XZ; Tong Y; Hu YX
    Materials (Basel); 2018 Nov; 11(11):. PubMed ID: 30441795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite-Time Lyapunov Exponents and Lagrangian Coherent Structures in Uncertain Unsteady Flows.
    Guo H; He W; Peterka T; Shen HW; Collis S; Helmus J
    IEEE Trans Vis Comput Graph; 2016 Jun; 22(6):1672-1682. PubMed ID: 26955037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Attracting Lagrangian coherent structures on Riemannian manifolds.
    Karrasch D
    Chaos; 2015 Aug; 25(8):087411. PubMed ID: 26328582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Do Finite-Size Lyapunov Exponents detect coherent structures?
    Karrasch D; Haller G
    Chaos; 2013 Dec; 23(4):043126. PubMed ID: 24387565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chaotic mixing via streamline jumping in quasi-two-dimensional tumbled granular flows.
    Christov IC; Ottino JM; Lueptow RM
    Chaos; 2010 Jun; 20(2):023102. PubMed ID: 20590298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lagrangian coherent structures and the smallest finite-time Lyapunov exponent.
    Haller G; Sapsis T
    Chaos; 2011 Jun; 21(2):023115. PubMed ID: 21721757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface mixing and biological activity in the North-West African upwelling.
    El Aouni A; Daoudi K; Yahia H; Minaoui K; Benazzouz A
    Chaos; 2019 Jan; 29(1):011104. PubMed ID: 30709139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Geometrical constraints on finite-time Lyapunov exponents in two and three dimensions.
    Thiffeault JL; Boozer AH
    Chaos; 2001 Mar; 11(1):16-28. PubMed ID: 12779437
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Backward Finite-Time Lyapunov Exponents in Inertial Flows.
    Gunther T; Theisel H
    IEEE Trans Vis Comput Graph; 2017 Jan; 23(1):970-979. PubMed ID: 27875210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The computation of finite-time Lyapunov exponents on unstructured meshes and for non-Euclidean manifolds.
    Lekien F; Ross SD
    Chaos; 2010 Mar; 20(1):017505. PubMed ID: 20370295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On-Line Optical Monitoring of the Mixing Performance in Co-Rotating Twin-Screw Extruders.
    Bernardo F; Covas JA; Canevarolo SV
    Polymers (Basel); 2022 Mar; 14(6):. PubMed ID: 35335483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chaotic advection in a recirculating flow: Effect of a fluid multiple-flexible-solid interaction.
    Prasad V; Sharma A; Kulkarni SS
    Chaos; 2023 Apr; 33(4):. PubMed ID: 37097943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chaotic advection in a recirculating flow: Effect of a fluid-flexible-solid interaction.
    Prasad V; Kulkarni SS; Sharma A
    Chaos; 2022 Apr; 32(4):043122. PubMed ID: 35489862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the transport topology in patient-specific abdominal aortic aneurysm models.
    Arzani A; Shadden SC
    Phys Fluids (1994); 2012 Aug; 24(8):81901. PubMed ID: 22952409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Applying finite-time lyapunov exponent to study the tidal dispersion on oil spill trajectory in Burrard Inlet.
    Zhong X; Wu Y; Hannah C; Li S; Niu H
    J Hazard Mater; 2022 Sep; 437():129404. PubMed ID: 35752049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mixing and clustering in compressible chaotic stirred flows.
    Pérez-Muñuzuri V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022917. PubMed ID: 25353555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mixing in fully chaotic flows.
    Wonhas A; Vassilicos JC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 1):051205. PubMed ID: 12513477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding surgical smoke in laparoscopy through Lagrangian Coherent Structures.
    Kumar S; Crowley C; Khan MF; Bustamante MD; Cahill RA; Nolan K
    PLoS One; 2023; 18(11):e0293287. PubMed ID: 37963139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using Lagrangian coherent structures to analyze fluid mixing by cilia.
    Lukens S; Yang X; Fauci L
    Chaos; 2010 Mar; 20(1):017511. PubMed ID: 20370301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chaotic stirring in quasi-turbulent flows.
    Lekien F; Coulliette C
    Philos Trans A Math Phys Eng Sci; 2007 Dec; 365(1861):3061-84. PubMed ID: 17872361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.