These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 30441839)

  • 21. The Shape Effect of Acoustic Micropillar Array Chips in Flexible Label-Free Separation of Cancer Cells.
    Lin L; Zhu R; Li W; Dong G; You H
    Micromachines (Basel); 2024 Mar; 15(4):. PubMed ID: 38675233
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ultrasonic microstreaming for complex-trajectory transport and rotation of single particles and cells.
    Ma Z; Zhou Y; Cai F; Meng L; Zheng H; Ai Y
    Lab Chip; 2020 Aug; 20(16):2947-2953. PubMed ID: 32661536
    [TBL] [Abstract][Full Text] [Related]  

  • 23. AC electric field induced dipole-based on-chip 3D cell rotation.
    Benhal P; Chase JG; Gaynor P; Oback B; Wang W
    Lab Chip; 2014 Aug; 14(15):2717-27. PubMed ID: 24933556
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Observations of acoustic streaming fields around an oscillating ultrasonic file.
    Ahmad M; Roy RA; Kamarudin AG
    Endod Dent Traumatol; 1992 Oct; 8(5):189-94. PubMed ID: 1302678
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Acoustic streaming in the transducer plane in ultrasonic particle manipulation devices.
    Lei J; Glynne-Jones P; Hill M
    Lab Chip; 2013 Jun; 13(11):2133-43. PubMed ID: 23609455
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enriching Nanoparticles via Acoustofluidics.
    Mao Z; Li P; Wu M; Bachman H; Mesyngier N; Guo X; Liu S; Costanzo F; Huang TJ
    ACS Nano; 2017 Jan; 11(1):603-612. PubMed ID: 28068078
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Three-dimensional manipulation of single cells using surface acoustic waves.
    Guo F; Mao Z; Chen Y; Xie Z; Lata JP; Li P; Ren L; Liu J; Yang J; Dao M; Suresh S; Huang TJ
    Proc Natl Acad Sci U S A; 2016 Feb; 113(6):1522-7. PubMed ID: 26811444
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Topographical Manipulation of Microparticles and Cells with Acoustic Microstreaming.
    Lu X; Soto F; Li J; Li T; Liang Y; Wang J
    ACS Appl Mater Interfaces; 2017 Nov; 9(44):38870-38876. PubMed ID: 29028308
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Acoustofluidic waveguides for localized control of acoustic wavefront in microfluidics.
    Bian Y; Guo F; Yang S; Mao Z; Bachman H; Tang SY; Ren L; Zhang B; Gong J; Guo X; Huang TJ
    Microfluid Nanofluidics; 2017 Aug; 21():. PubMed ID: 29358901
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cavity-agnostic acoustofluidic manipulations enabled by guided flexural waves on a membrane acoustic waveguide actuator.
    Vachon P; Merugu S; Sharma J; Lal A; Ng EJ; Koh Y; Lee JE; Lee C
    Microsyst Nanoeng; 2024; 10():33. PubMed ID: 38463549
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Kilohertz-Frequency Rotation of Acoustically Levitated Particles.
    Rothlisberger M; Schuck M; Kolar JW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Apr; 69(4):1528-1534. PubMed ID: 35120003
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Polydimethylsiloxane microstructure-induced acoustic streaming for enhanced ultrasonic DNA fragmentation on a microfluidic chip.
    Sun L; Lehnert T; Gijs MAM; Li S
    Lab Chip; 2022 Oct; 22(21):4224-4237. PubMed ID: 36178361
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microfabricated acoustofluidic membrane acoustic waveguide actuator for highly localized in-droplet dynamic particle manipulation.
    Vachon P; Merugu S; Sharma J; Lal A; Ng EJ; Koh Y; Lee JE; Lee C
    Lab Chip; 2023 Mar; 23(7):1865-1878. PubMed ID: 36852544
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Acoustic streaming induced by two orthogonal ultrasound standing waves in a microfluidic channel.
    Doinikov AA; Thibault P; Marmottant P
    Ultrasonics; 2018 Jul; 87():7-19. PubMed ID: 29428563
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Acoustofluidic relay: sequential trapping and transporting of microparticles via acoustically excited oscillating bubbles.
    Xie Y; Ahmed D; Lapsley MI; Lu M; Li S; Huang TJ
    J Lab Autom; 2014 Apr; 19(2):137-43. PubMed ID: 23592570
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Low-frequency flexural wave based microparticle manipulation.
    Bachman H; Gu Y; Rufo J; Yang S; Tian Z; Huang PH; Yu L; Huang TJ
    Lab Chip; 2020 Apr; 20(7):1281-1289. PubMed ID: 32154525
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Acoustofluidic generation of droplets with tunable chemical concentrations.
    Park J; Destgeer G; Afzal M; Sung HJ
    Lab Chip; 2020 Oct; 20(21):3922-3929. PubMed ID: 33026382
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microfluidic flow switching
    Jung JH; Destgeer G; Park J; Ahmed H; Park K; Sung HJ
    RSC Adv; 2018 Jan; 8(6):3206-3212. PubMed ID: 35541169
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Lotus shaped acoustofluidic mixer: High throughput homogenisation of liquids in 2 ms using hydrodynamically coupled resonators.
    Pourabed A; Brenker J; Younas T; He L; Alan T
    Ultrason Sonochem; 2022 Feb; 83():105936. PubMed ID: 35144192
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Human Microrobot Interface Based on Acoustic Manipulation.
    Lu X; Zhao K; Liu W; Yang D; Shen H; Peng H; Guo X; Li J; Wang J
    ACS Nano; 2019 Oct; 13(10):11443-11452. PubMed ID: 31425653
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.