BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 30441879)

  • 1. Thermoplastic PCL-
    Güney A; Gardiner C; McCormack A; Malda J; Grijpma DW
    Bioengineering (Basel); 2018 Nov; 5(4):. PubMed ID: 30441879
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Triblock copolymers based on ε-caprolactone and trimethylene carbonate for the 3D printing of tissue engineering scaffolds.
    Güney A; Malda J; Dhert WJA; Grijpma DW
    Int J Artif Organs; 2017 May; 40(4):176-184. PubMed ID: 28165584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystallization enhanced thermal-sensitive hydrogels of PCL-PEG-PCL triblock copolymer for 3D printing.
    Cui Y; Jin R; Zhou Y; Yu M; Ling Y; Wang LQ
    Biomed Mater; 2021 Feb; 16(3):. PubMed ID: 33086194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tough combinatorial poly(urethane-isocyanurate) polymer networks and hydrogels synthesized by the trimerization of mixtures of NCO-prepolymers.
    Driest PJ; Dijkstra DJ; Stamatialis D; Grijpma DW
    Acta Biomater; 2020 Mar; 105():87-96. PubMed ID: 31978622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermosensitive block copolymer hydrogels based on poly(ɛ-caprolactone) and polyethylene glycol for biomedical applications: state of the art and future perspectives.
    Boffito M; Sirianni P; Di Rienzo AM; Chiono V
    J Biomed Mater Res A; 2015 Mar; 103(3):1276-90. PubMed ID: 24912941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Medical-Grade PCL Based Polyurethane System for FDM 3D Printing-Characterization and Fabrication.
    Haryńska A; Kucinska-Lipka J; Sulowska A; Gubanska I; Kostrzewa M; Janik H
    Materials (Basel); 2019 Mar; 12(6):. PubMed ID: 30884832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Molecular Weight on Gelling and Viscoelastic Properties of Poly(caprolactone)-b-Poly(ethylene glycol)-b-Poly(caprolactone) (PCL-PEG-PCL) Hydrogels.
    Steinman NY; Bentolila NY; Domb AJ
    Polymers (Basel); 2020 Oct; 12(10):. PubMed ID: 33076459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical properties of polycaprolactone (PCL) scaffolds for hybrid 3D-bioprinting with alginate-gelatin hydrogel.
    Koch F; Thaden O; Conrad S; Tröndle K; Finkenzeller G; Zengerle R; Kartmann S; Zimmermann S; Koltay P
    J Mech Behav Biomed Mater; 2022 Jun; 130():105219. PubMed ID: 35413680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D printing of a tough double-network hydrogel and its use as a scaffold to construct a tissue-like hydrogel composite.
    Du C; Hu J; Wu X; Shi H; Yu HC; Qian J; Yin J; Gao C; Wu ZL; Zheng Q
    J Mater Chem B; 2022 Jan; 10(3):468-476. PubMed ID: 34982091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and characterization of biodegradable polyurethane films based on HDI with hydrolyzable crosslinked bonds and a homogeneous structure for biomedical applications.
    Barrioni BR; de Carvalho SM; Oréfice RL; de Oliveira AA; Pereira Mde M
    Mater Sci Eng C Mater Biol Appl; 2015; 52():22-30. PubMed ID: 25953536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scaffolds from block polyurethanes based on poly(ɛ-caprolactone) (PCL) and poly(ethylene glycol) (PEG) for peripheral nerve regeneration.
    Niu Y; Chen KC; He T; Yu W; Huang S; Xu K
    Biomaterials; 2014 May; 35(14):4266-77. PubMed ID: 24582378
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and 3D Printing of Personalized Hybrid and Gradient Structures for Critical Size Bone Defects.
    Altunbek M; Afghah SF; Fallah A; Acar AA; Koc B
    ACS Appl Bio Mater; 2023 May; 6(5):1873-1885. PubMed ID: 37071829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of a novel biomedical poly(ester urethane) based on aliphatic uniform-size diisocyanate and the blood compatibility of PEG-grafted surfaces.
    Liu X; Xia Y; Liu L; Zhang D; Hou Z
    J Biomater Appl; 2018 May; 32(10):1329-1342. PubMed ID: 29547018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of biomimetic bone grafts with multi-material 3D printing.
    Sears N; Dhavalikar P; Whitely M; Cosgriff-Hernandez E
    Biofabrication; 2017 May; 9(2):025020. PubMed ID: 28530207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clinoptilolite/PCL-PEG-PCL composite scaffolds for bone tissue engineering applications.
    Pazarçeviren E; Erdemli Ö; Keskin D; Tezcaner A
    J Biomater Appl; 2017 Mar; 31(8):1148-1168. PubMed ID: 27881642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellulose Nanocrystal-Enhanced Thermal-Sensitive Hydrogels of Block Copolymers for 3D Bioprinting.
    Cui Y; Jin R; Zhang Y; Yu M; Zhou Y; Wang LQ
    Int J Bioprint; 2021; 7(4):397. PubMed ID: 34805591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tough, Transparent, 3D-Printable, and Self-Healing Poly(ethylene glycol)-Gel (PEGgel).
    Wang Z; Cui H; Liu M; Grage SL; Hoffmann M; Sedghamiz E; Wenzel W; Levkin PA
    Adv Mater; 2022 Mar; 34(11):e2107791. PubMed ID: 34854140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational investigation of interface printing patterns within 3D printed multilayered scaffolds for osteochondral tissue engineering.
    Choe R; Devoy E; Kuzemchak B; Sherry M; Jabari E; Packer JD; Fisher JP
    Biofabrication; 2022 Feb; 14(2):. PubMed ID: 35120345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and Characterization of Polycaprolactone-Based Polyurethanes for the Fabrication of Elastic Guided Bone Regeneration Membrane.
    Lee SY; Wu SC; Chen H; Tsai LL; Tzeng JJ; Lin CH; Lin YM
    Biomed Res Int; 2018; 2018():3240571. PubMed ID: 29862262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biodegradable hyperbranched amphiphilic polyurethane multiblock copolymers consisting of poly(propylene glycol), poly(ethylene glycol), and polycaprolactone as in situ thermogels.
    Li Z; Zhang Z; Liu KL; Ni X; Li J
    Biomacromolecules; 2012 Dec; 13(12):3977-89. PubMed ID: 23167676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.