These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 30441898)

  • 1. Pressure Stabilization of Criegee Intermediates Formed from Symmetric trans-Alkene Ozonolysis.
    Hakala JP; Donahue NM
    J Phys Chem A; 2018 Dec; 122(49):9426-9434. PubMed ID: 30441898
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pressure-Dependent Criegee Intermediate Stabilization from Alkene Ozonolysis.
    Hakala JP; Donahue NM
    J Phys Chem A; 2016 Apr; 120(14):2173-8. PubMed ID: 27018612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pressure dependence of stabilized Criegee intermediate formation from a sequence of alkenes.
    Drozd GT; Donahue NM
    J Phys Chem A; 2011 May; 115(17):4381-7. PubMed ID: 21476564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbonyl Oxide Stabilization from Trans Alkene and Terpene Ozonolysis.
    Hakala J; Donahue NM
    J Phys Chem A; 2023 Oct; 127(41):8530-8543. PubMed ID: 37792960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 2,3-Dimethyl-2-butene (TME) ozonolysis: pressure dependence of stabilized Criegee intermediates and evidence of stabilized vinyl hydroperoxides.
    Drozd GT; Kroll J; Donahue NM
    J Phys Chem A; 2011 Jan; 115(2):161-6. PubMed ID: 21162563
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unimolecular Decay of Criegee Intermediates to OH Radical Products: Prompt and Thermal Decay Processes.
    Lester MI; Klippenstein SJ
    Acc Chem Res; 2018 Apr; 51(4):978-985. PubMed ID: 29613756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trends in stabilisation of Criegee intermediates from alkene ozonolysis.
    Newland MJ; Nelson BS; Muñoz A; Ródenas M; Vera T; Tárrega J; Rickard AR
    Phys Chem Chem Phys; 2020 Jun; 22(24):13698-13706. PubMed ID: 32525165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unimolecular Decay of the Dimethyl-Substituted Criegee Intermediate in Alkene Ozonolysis: Decay Time Scales and the Importance of Tunneling.
    Drozd GT; Kurtén T; Donahue NM; Lester MI
    J Phys Chem A; 2017 Aug; 121(32):6036-6045. PubMed ID: 28692269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-Pressure and Nascent Yields of Thermalized Criegee Intermediate in Ozonolysis of Ethene.
    Yang L; Campos-Pineda M; Zhang J
    J Phys Chem Lett; 2022 Dec; 13(49):11496-11502. PubMed ID: 36469585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regional and global impacts of Criegee intermediates on atmospheric sulphuric acid concentrations and first steps of aerosol formation.
    Percival CJ; Welz O; Eskola AJ; Savee JD; Osborn DL; Topping DO; Lowe D; Utembe SR; Bacak A; McFiggans G; Cooke MC; Xiao P; Archibald AT; Jenkin ME; Derwent RG; Riipinen I; Mok DW; Lee EP; Dyke JM; Taatjes CA; Shallcross DE
    Faraday Discuss; 2013; 165():45-73. PubMed ID: 24600996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of stabilised Criegee intermediates derived from alkene ozonolysis: reactions with SO2, H2O and decomposition under boundary layer conditions.
    Newland MJ; Rickard AR; Alam MS; Vereecken L; Muñoz A; Ródenas M; Bloss WJ
    Phys Chem Chem Phys; 2015 Feb; 17(6):4076-88. PubMed ID: 25562069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-pressure and nascent yields of stabilized Criegee intermediates CH
    Yang L; Campos-Pineda M; Hatem K; Zhang J
    Phys Chem Chem Phys; 2023 Oct; 25(39):26549-26556. PubMed ID: 37753576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bimolecular Reaction of Methyl-Ethyl-Substituted Criegee Intermediate with SO
    Zou M; Liu T; Vansco MF; Sojdak CA; Markus CR; Almeida R; Au K; Sheps L; Osborn DL; Winiberg FAF; Percival CJ; Taatjes CA; Klippenstein SJ; Lester MI; Caravan RL
    J Phys Chem A; 2023 Nov; 127(43):8994-9002. PubMed ID: 37870411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photochemical sources of organic acids. 2. Formation of C5-C9 carboxylic acids from alkene ozonolysis under dry and humid conditions.
    Orzechowska GE; Nguyen HT; Paulson SE
    J Phys Chem A; 2005 Jun; 109(24):5366-75. PubMed ID: 16839061
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct observation of OH formation from stabilised Criegee intermediates.
    Novelli A; Vereecken L; Lelieveld J; Harder H
    Phys Chem Chem Phys; 2014 Oct; 16(37):19941-51. PubMed ID: 25119645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oligomer formation from cross-reaction of Criegee intermediates in the styrene-isoprene-O
    Yu S; Jia L; Xu Y; Pan Y
    Chemosphere; 2024 Feb; 349():140811. PubMed ID: 38040248
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photochemical sources of organic acids. 1. Reaction of ozone with isoprene, propene, and 2-butenes under dry and humid conditions using SPME.
    Orzechowska GE; Paulson SE
    J Phys Chem A; 2005 Jun; 109(24):5358-65. PubMed ID: 16839060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unimolecular Reaction Rate Measurement of
    Zhou X; Liu Y; Dong W; Yang X
    J Phys Chem Lett; 2019 Sep; 10(17):4817-4821. PubMed ID: 31382744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. UV spectroscopic characterization of an alkyl substituted Criegee intermediate CH3CHOO.
    Beames JM; Liu F; Lu L; Lester MI
    J Chem Phys; 2013 Jun; 138(24):244307. PubMed ID: 23822244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum Chemical and Statistical Rate Theory Studies of the Vinyl Hydroperoxides Formed in trans-2-Butene and 2,3-Dimethyl-2-butene Ozonolysis.
    Kuwata KT; Luu L; Weberg AB; Huang K; Parsons AJ; Peebles LA; Rackstraw NB; Kim MJ
    J Phys Chem A; 2018 Mar; 122(9):2485-2502. PubMed ID: 29431443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.