These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Quenching of OH(A(2)Sigma(+)) by H(2) through conical intersections: highly excited products in nonreactive channel. Zhang PY; Lu RF; Chu TS; Han KL J Phys Chem A; 2010 Jun; 114(24):6565-8. PubMed ID: 20499943 [TBL] [Abstract][Full Text] [Related]
8. A new potential energy surface for OH(A 2Σ+)-Kr: the van der Waals complex and inelastic scattering. Chadwick H; Brouard M; Chang YP; Eyles CJ; Perkins T; Seamons SA; Kłos J; Alexander MH; Aoiz FJ J Chem Phys; 2012 Oct; 137(15):154305. PubMed ID: 23083163 [TBL] [Abstract][Full Text] [Related]
9. Differential and integral cross sections in OH(X) + Xe collisions. Sarma G; Saha AK; ter Meulen JJ; Parker DH; Marinakis S J Chem Phys; 2015 Jan; 142(3):034309. PubMed ID: 25612711 [TBL] [Abstract][Full Text] [Related]
10. Quasiclassical trajectory study of the postquenching dynamics of OH A 2Σ+ by H2/D2 on a global potential energy surface. Fu B; Kamarchik E; Bowman JM J Chem Phys; 2010 Oct; 133(16):164306. PubMed ID: 21033787 [TBL] [Abstract][Full Text] [Related]
11. Ab initio ground and excited state potential energy surfaces for NO-Kr complex and dynamics of Kr solids with NO impurity. Castro-Palacios JC; Rubayo-Soneira J; Ishii K; Yamashita K J Chem Phys; 2007 Apr; 126(13):134315. PubMed ID: 17430040 [TBL] [Abstract][Full Text] [Related]
12. Nonadiabatic quantum reactive scattering of the OH(A 2Σ+) + D2. Zhang PY; Lu RF; Chu TS; Han KL J Chem Phys; 2010 Nov; 133(17):174316. PubMed ID: 21054041 [TBL] [Abstract][Full Text] [Related]
14. Three-state trajectory surface hopping studies of the photodissociation dynamics of formaldehyde on ab initio potential energy surfaces. Fu B; Shepler BC; Bowman JM J Am Chem Soc; 2011 May; 133(20):7957-68. PubMed ID: 21526775 [TBL] [Abstract][Full Text] [Related]
15. Nonadiabatic couplings in the collisional removal of O(2)(b (1)Sigma(g) (+),v) by O(2). Dayou F; Hernández MI; Campos-Martínez J; Hernández-Lamoneda R J Chem Phys; 2010 Jan; 132(4):044313. PubMed ID: 20113039 [TBL] [Abstract][Full Text] [Related]
16. Study of the C(3P) + OH(X2Pi) --> CO(a3Pi) + H(2S) reaction: fully global ab initio potential energy surfaces of the 12A'' and 14A'' excited states and non adiabatic couplings. Zanchet A; Bussery-Honvault B; Jorfi M; Honvault P Phys Chem Chem Phys; 2009 Aug; 11(29):6182-91. PubMed ID: 19606328 [TBL] [Abstract][Full Text] [Related]
17. Ab initio potential energy surfaces, total absorption cross sections, and product quantum state distributions for the low-lying electronic states of N(2)O. Daud MN; Balint-Kurti GG; Brown A J Chem Phys; 2005 Feb; 122(5):54305. PubMed ID: 15740320 [TBL] [Abstract][Full Text] [Related]
18. New ab initio potential energy surfaces for the ro-vibrational excitation of OH(X(2)Π) by He. Kalugina Y; Lique F; Marinakis S Phys Chem Chem Phys; 2014 Jul; 16(26):13500-7. PubMed ID: 24888632 [TBL] [Abstract][Full Text] [Related]
19. Born-Oppenheimer and Renner-Teller coupled-channel quantum reaction dynamics of O((3)P) + H2(+)(X(2)Σg(+)) collisions. Gamallo P; Defazio P; González M; Paniagua M; Petrongolo C Phys Chem Chem Phys; 2015 Sep; 17(36):23392-402. PubMed ID: 26289380 [TBL] [Abstract][Full Text] [Related]
20. Investigations of the Rg-BrCl (Rg=He, Ne, Ar, Kr, Xe) binary van der Waals complexes: ab initio intermolecular potential energy surfaces, vibrational states and predicted pure rotational transition frequencies. Li S; Zheng R; Chen SJ; Chen Y; Chen P Spectrochim Acta A Mol Biomol Spectrosc; 2017 Mar; 174():105-117. PubMed ID: 27888780 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]