BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 30442086)

  • 1. Learning protein binding affinity using privileged information.
    Abbasi WA; Asif A; Ben-Hur A; Minhas FUAA
    BMC Bioinformatics; 2018 Nov; 19(1):425. PubMed ID: 30442086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PANDA: Predicting the change in proteins binding affinity upon mutations by finding a signal in primary structures.
    Abbasi WA; Abbas SA; Andleeb S
    J Bioinform Comput Biol; 2021 Aug; 19(4):2150015. PubMed ID: 34126874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterizing informative sequence descriptors and predicting binding affinities of heterodimeric protein complexes.
    Srinivasulu YS; Wang JR; Hsu KT; Tsai MJ; Charoenkwan P; Huang WL; Huang HL; Ho SY
    BMC Bioinformatics; 2015; 16 Suppl 18(Suppl 18):S14. PubMed ID: 26681483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accurate Sequence-Based Prediction of Deleterious nsSNPs with Multiple Sequence Profiles and Putative Binding Residues.
    Song R; Cao B; Peng Z; Oldfield CJ; Kurgan L; Wong KC; Yang J
    Biomolecules; 2021 Sep; 11(9):. PubMed ID: 34572550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure-based prediction of protein- peptide binding regions using Random Forest.
    Taherzadeh G; Zhou Y; Liew AW; Yang Y
    Bioinformatics; 2018 Feb; 34(3):477-484. PubMed ID: 29028926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robust and accurate prediction of protein self-interactions from amino acids sequence using evolutionary information.
    An JY; You ZH; Chen X; Huang DS; Yan G; Wang DF
    Mol Biosyst; 2016 Nov; 12(12):3702-3710. PubMed ID: 27759121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DeepDTA: deep drug-target binding affinity prediction.
    Öztürk H; Özgür A; Ozkirimli E
    Bioinformatics; 2018 Sep; 34(17):i821-i829. PubMed ID: 30423097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Boosting phosphorylation site prediction with sequence feature-based machine learning.
    Maiti S; Hassan A; Mitra P
    Proteins; 2020 Feb; 88(2):284-291. PubMed ID: 31412138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effective DNA binding protein prediction by using key features via Chou's general PseAAC.
    Adilina S; Farid DM; Shatabda S
    J Theor Biol; 2019 Jan; 460():64-78. PubMed ID: 30316822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ISLAND: in-silico proteins binding affinity prediction using sequence information.
    Abbasi WA; Yaseen A; Hassan FU; Andleeb S; Minhas FUAA
    BioData Min; 2020 Nov; 13(1):20. PubMed ID: 33292419
    [TBL] [Abstract][Full Text] [Related]  

  • 11. iSEE: Interface structure, evolution, and energy-based machine learning predictor of binding affinity changes upon mutations.
    Geng C; Vangone A; Folkers GE; Xue LC; Bonvin AMJJ
    Proteins; 2019 Feb; 87(2):110-119. PubMed ID: 30417935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and Sequence Similarity Makes a Significant Impact on Machine-Learning-Based Scoring Functions for Protein-Ligand Interactions.
    Li Y; Yang J
    J Chem Inf Model; 2017 Apr; 57(4):1007-1012. PubMed ID: 28358210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of Protein-Protein Interaction Sites with Machine-Learning-Based Data-Cleaning and Post-Filtering Procedures.
    Liu GH; Shen HB; Yu DJ
    J Membr Biol; 2016 Apr; 249(1-2):141-53. PubMed ID: 26563228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HemeBIND: a novel method for heme binding residue prediction by combining structural and sequence information.
    Liu R; Hu J
    BMC Bioinformatics; 2011 May; 12():207. PubMed ID: 21612668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA binding protein identification by combining pseudo amino acid composition and profile-based protein representation.
    Liu B; Wang S; Wang X
    Sci Rep; 2015 Oct; 5():15479. PubMed ID: 26482832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DeepSSPred: A Deep Learning Based Sulfenylation Site Predictor Via a Novel nSegmented Optimize Federated Feature Encoder.
    Khan ZU; Pi D
    Protein Pept Lett; 2021; 28(6):708-721. PubMed ID: 33267753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of zinc-binding sites using multiple sequence profiles and machine learning methods.
    Yan R; Wang X; Tian Y; Xu J; Xu X; Lin J
    Mol Omics; 2019 Jun; 15(3):205-215. PubMed ID: 31046040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A D3R prospective evaluation of machine learning for protein-ligand scoring.
    Sunseri J; Ragoza M; Collins J; Koes DR
    J Comput Aided Mol Des; 2016 Sep; 30(9):761-771. PubMed ID: 27592011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine learning in computational docking.
    Khamis MA; Gomaa W; Ahmed WF
    Artif Intell Med; 2015 Mar; 63(3):135-52. PubMed ID: 25724101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An interpretable machine learning method for homo-trimeric protein interface residue-residue interaction prediction.
    Hong Z; Liu J; Chen Y
    Biophys Chem; 2021 Nov; 278():106666. PubMed ID: 34418678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.