BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

689 related articles for article (PubMed ID: 30442338)

  • 61. Single-molecule imaging reveals multiple pathways for the recruitment of translesion polymerases after DNA damage.
    Thrall ES; Kath JE; Chang S; Loparo JJ
    Nat Commun; 2017 Dec; 8(1):2170. PubMed ID: 29255195
    [TBL] [Abstract][Full Text] [Related]  

  • 62. DNA lesions proximity modulates damage tolerance pathways in Escherichia coli.
    Chrabaszcz É; Laureti L; Pagès V
    Nucleic Acids Res; 2018 May; 46(8):4004-4012. PubMed ID: 29529312
    [TBL] [Abstract][Full Text] [Related]  

  • 63. NMR mapping of PCNA interaction with translesion synthesis DNA polymerase Rev1 mediated by Rev1-BRCT domain.
    Pustovalova Y; Maciejewski MW; Korzhnev DM
    J Mol Biol; 2013 Sep; 425(17):3091-105. PubMed ID: 23747975
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A hand-off of DNA between archaeal polymerases allows high-fidelity replication to resume at a discrete intermediate three bases past 8-oxoguanine.
    Cranford MT; Kaszubowski JD; Trakselis MA
    Nucleic Acids Res; 2020 Nov; 48(19):10986-10997. PubMed ID: 32997110
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Translesion synthesis in Escherichia coli: lessons from the NarI mutation hot spot.
    Fuchs RP; Fujii S
    DNA Repair (Amst); 2007 Jul; 6(7):1032-41. PubMed ID: 17403618
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Multisite SUMOylation restrains DNA polymerase η interactions with DNA damage sites.
    Guérillon C; Smedegaard S; Hendriks IA; Nielsen ML; Mailand N
    J Biol Chem; 2020 Jun; 295(25):8350-8362. PubMed ID: 32350109
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Roles of PCNA ubiquitination and TLS polymerases κ and η in the bypass of methyl methanesulfonate-induced DNA damage.
    Wit N; Buoninfante OA; van den Berk PC; Jansen JG; Hogenbirk MA; de Wind N; Jacobs H
    Nucleic Acids Res; 2015 Jan; 43(1):282-94. PubMed ID: 25505145
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Role of TLS DNA polymerases eta and kappa in processing naturally occurring structured DNA in human cells.
    Bétous R; Rey L; Wang G; Pillaire MJ; Puget N; Selves J; Biard DS; Shin-ya K; Vasquez KM; Cazaux C; Hoffmann JS
    Mol Carcinog; 2009 Apr; 48(4):369-78. PubMed ID: 19117014
    [TBL] [Abstract][Full Text] [Related]  

  • 69. SOS mutagenesis results from up-regulation of translesion synthesis.
    Becherel OJ; Fuchs RP
    J Mol Biol; 1999 Nov; 294(2):299-306. PubMed ID: 10610759
    [TBL] [Abstract][Full Text] [Related]  

  • 70. DNA polymerase zeta: new insight into eukaryotic mutagenesis and mammalian embryonic development.
    Zhu F; Zhang M
    World J Gastroenterol; 2003 Jun; 9(6):1165-9. PubMed ID: 12800216
    [TBL] [Abstract][Full Text] [Related]  

  • 71. During Translesion Synthesis, Escherichia coli DinB89 (T120P) Alters Interactions of DinB (Pol IV) with Pol III Subunit Assemblies and SSB, but Not with the β Clamp.
    Scotland MK; Homiski C; Sutton MD
    J Bacteriol; 2022 Apr; 204(4):e0061121. PubMed ID: 35285726
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Translesion DNA Synthesis and Reinitiation of DNA Synthesis in Chemotherapy Resistance.
    Shilkin ES; Boldinova EO; Stolyarenko AD; Goncharova RI; Chuprov-Netochin RN; Smal MP; Makarova AV
    Biochemistry (Mosc); 2020 Aug; 85(8):869-882. PubMed ID: 33045948
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Changes in the architecture and abundance of replication intermediates delineate the chronology of DNA damage tolerance pathways at UV-stalled replication forks in human cells.
    Benureau Y; Pouvelle C; Dupaigne P; Baconnais S; Moreira Tavares E; Mazón G; Despras E; Le Cam E; Kannouche PL
    Nucleic Acids Res; 2022 Sep; 50(17):9909-9929. PubMed ID: 36107774
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Analysis of CPD ultraviolet lesion bypass in chicken DT40 cells: polymerase η and PCNA ubiquitylation play identical roles.
    Varga A; Marcus AP; Himoto M; Iwai S; Szüts D
    PLoS One; 2012; 7(12):e52472. PubMed ID: 23272247
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Translesion synthesis of O4-alkylthymidine lesions in human cells.
    Wu J; Li L; Wang P; You C; Williams NL; Wang Y
    Nucleic Acids Res; 2016 Nov; 44(19):9256-9265. PubMed ID: 27466394
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Translesion synthesis DNA polymerases and control of genome stability.
    Shcherbakova PV; Fijalkowska IJ
    Front Biosci; 2006 Sep; 11():2496-517. PubMed ID: 16720328
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Crosstalk between translesion synthesis, Fanconi anemia network, and homologous recombination repair pathways in interstrand DNA crosslink repair and development of chemoresistance.
    Haynes B; Saadat N; Myung B; Shekhar MP
    Mutat Res Rev Mutat Res; 2015; 763():258-66. PubMed ID: 25795124
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Roles of DNA polymerases V and II in SOS-induced error-prone and error-free repair in Escherichia coli.
    Pham P; Rangarajan S; Woodgate R; Goodman MF
    Proc Natl Acad Sci U S A; 2001 Jul; 98(15):8350-4. PubMed ID: 11459974
    [TBL] [Abstract][Full Text] [Related]  

  • 79. DNA damage induced Pol eta recruitment takes place independently of the cell cycle phase.
    Soria G; Belluscio L; van Cappellen WA; Kanaar R; Essers J; Gottifredi V
    Cell Cycle; 2009 Oct; 8(20):3340-8. PubMed ID: 19806028
    [TBL] [Abstract][Full Text] [Related]  

  • 80. DNA polymerase zeta cooperates with polymerases kappa and iota in translesion DNA synthesis across pyrimidine photodimers in cells from XPV patients.
    Ziv O; Geacintov N; Nakajima S; Yasui A; Livneh Z
    Proc Natl Acad Sci U S A; 2009 Jul; 106(28):11552-7. PubMed ID: 19564618
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 35.